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1. Introduction

This paper describes an approach using metered data to estimate annual community energy
consumption baselines for single-family detached homes in the Gainesville Regional Utility
(GRU) service area of Alachua County, Florida, United States. Further, it details methods using
these baselines to make direct comparisons of individual households’ energy consumption and
evaluate the performance impacts of three prescriptive demand side management (DSM)
programs. This approach demonstrates the potential for application to a range of energy
efficiency programs and utility service areas to improve impact evaluations and estimates of
energy savings.

1.1 Building-Sector Energy Efficiency

Housing has an important role to play in decreasing overall energy consumption and associated
Greenhouse Gas (GHG) emissions. Over the last decade the residential building sector
accounted for over 20% of total U.S. energy consumption (EIA, 2009, p. 38), and this is an
important sector to evaluate given that “single-family detached homes are the most energy-
intensive housing type” (EIA, 1999). Despite residential energy intensity decreasing 9% from
1985 to 2004, total residential household and per capita energy use rose as house sizes increased
while household occupancy decreased (DOE, 2008, p. 12). For all buildings (residential and
commercial) GHG emissions averaged a 2.1% annual growth rate over approximately the same
period (McMahon, McNeil et al., 2007, p. 95).

Because of the building sector’s size and relatively inefficient energy consumption patterns, it IS
a high-priority target for policies aiming to mitigate climate change and improve energy security.
Improvements in energy efficiency “probably offer the greatest potential to provide [GHG
emissions mitigation] wedges” for the United States (Pacala and Socolow, 2004, p. 969). Many
estimates of the potential for reducing household energy consumption indicate that the residential
building sector is and will continue to be a critical player in achieving this potential (Dietz et al.,
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2009; Horowitz, 2007). Some studies have projected that a whole-building systems integration
of current best practices can reduce residential energy intensity between 30-40% at little or no
additional cost, and possibly up to 70-90% in optimal situations (Affordable Comfort Inc., 2007,
McMahon, McNeil et al., 2007, p. 95; DOE, 2008, p. 12).

Federal and state governments promote energy efficiency in the residential sector with a variety
of programs, some flexible and others highly prescriptive. For new residential construction the
best known examples are the US Environmental Protection Agency’s (EPA) ENERGY STAR®
Homes program, which essentially requires a home to be ~15% more energy efficient than one
built to code[1], and the US Department of Energy’s (DOE) Building America Builders
Challenge, which requires homes to be ~30% more energy efficient than houses built to code[2].
These two programs set performance thresholds rather than directly requiring specific practices
and/or materials and both are flexible in the sense that builders can choose through design and
product specification how to achieve the required efficiency targets. For existing housing the
best known program is the DOE’s Weatherization Assistance Program (WAP), a highly
prescriptive retrofit program that ranks explicit residential retrofits and funds them in priority
order[3].

Both the ENERGY STAR and Builders Challenge programs rely on Home Energy Rating
System (HERS) Index scores as performance measures. A HERS rater uses an energy efficiency
software package, EnergyGauge®[4], to perform an energy analysis of a home’s design and
specified components (windows, insulation, etc.). The rater then conducts on-site inspections,
typically including a blower door test (to measure the air infiltration of the house) and a duct test
(to measure leakage in Heating, Ventilation and Air Conditioning (HVAC) duct systems).
Results of these tests, along with inputs derived from the plan review, are evaluated in reference
to a similar home built to code and are then used to generate a home’s HERS Index score[5].
ENERGY STAR and Builders Challenge program designations are awarded before a new home
is occupied on the basis of HERS Index score meeting specific thresholds. Smith and Jones
(2003) found that annual household energy consumption for ENERGY STAR qualified homes
was significantly lower (~12% less) than conventionally built homes. However, post-occupancy
household energy consumption data are seldom used to evaluate the success of these energy
efficiency programs in achieving actual absolute or relative energy savings.

1.2 Demand Side Management (DSM) Program Goals and Outcomes

Historically, utility demand-side management (DSM) programs were designed to encourage
consumers to modify their level and pattern of electricity usage in an effort to delay investments
in new power plants and to manage costly peak electric demand (EIA, 1999). More recently,
DSM programs have become linked to public policy concerns such as reducing financial burdens
on low income households and reducing GHG emissions. Today, a fundamental goal of many
DSM programs is to change patterns of energy use, thereby reducing absolute energy
consumption and associated GHG emissions. Investor-owned utilities in Florida must submit
DSM plans to the Public Service Commission as part of their responsibilities as regulated
monopolies. Both investor-owned and municipal utilities are required to report DSM impact
annually to the DOE Energy Information Administration (EIA) via Form EIA-861 (EIA, 2007).
As DSM programs have moved more directly into the public policy sphere, utilities have shown
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a growing interest not only in implementing programs with meaningful energy consumption
impacts, but also in maintaining the perception of successful programs.

Utility energy conservation programs (as well as national, state and local governments) are
relying increasingly on incentives linked to “green certification” protocols to reduce residential
energy use. Programs like ENERGY STAR are perceived to increase brand power for premium
product pricing while encouraging reduced energy consumption:
“If you purchase an energy-efficient product, you may be eligible for a federal tax
credit...ENERGY STAR distinguishes energy efficient products which, although
they may cost more to purchase than standard models, will pay you back in lower
energy bills within a reasonable amount of time, [even] without a tax credit”[6].
Like many other power providers, GRU links one of its largest DSM rebates directly to the
Home Performance with ENERGY STAR Program, “a whole-house approach developed to
assist residential electric customers in upgrading existing homes to reduce energy use [and]
lower their bills”[7].

All of the described programs’ performance baselines rely on projected energy savings that are
calculated from the energy efficiency characteristics of applied upgrades (such as programmable
thermostats, ceiling fans and water heaters). The methods used to project energy savings can
range from simplistic, such as a directly comparison of incandescent and compact fluorescent
lamp energy use over a given period of time, to sophisticated, holistic processes using simulation
modeling and direct testing, such as HERS Index scoring. Essentially, all program rebates, tax
credits and energy efficiency designations are awarded on the front-end with no validation of
post-occupancy energy consumption required.

This has led to a tendency in the building industry to rely on program labels and designations
rather than on direct measurement of actual performance. There is growing concern that
voluntary programs, such as the United States Green Building Council's (USGBC) Leadership in
Energy and Environmental Design (LEED) programs, can mask a lack of energy-focused design
behind other non-energy criteria, inaccurately estimate the actual energy in occupied buildings,
and/or fail to acknowledge that performance persistence may degrade over time (Stein and
Meier, 2000; Cannon et al., 2008; Gifford, 2008; Jones and Vyas, 2008; Lstiburek, 2008; Malin,
2008; Del Percio, 2009; Scofield, 2009). These concerns are likely to be exacerbated if caps on
GHG emissions are imposed.

Utilities can address these concerns directly, especially as they relate to DSM programs. Since
they collect monthly energy consumption data (essential to their customer billing functions), they
can directly quantify individual household energy consumption patterns and changes attributable
to DSM programs. Property appraiser data also are available that provide basic building
characteristics of individual homes, which are important factors affecting residential energy
consumption and efficiency potential. By merging utility and property appraiser data, direct
comparisons of individual households’ energy consumption can be made and impacts of various
prescriptive DSM programs can be evaluated.
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1.3 Energy Use and Performance Baselines

Utilities reward customers with cash rebates for energy-efficiency upgrades that are presumed to
reduce actual energy use and reduce GHG emissions, and DSM program performance is often
evaluated based on its relative cost-effectiveness (e.g., cents per kWh saved or GHG emissions
avoided) (Gillingham et al., 2006). At the same time, “utility energy efficiency programs are
taking center stage in ongoing discussions about U.S. energy policy and how best to combat
climate change” (Arimura et al., 2009, p. 24). In this context, the appropriate construct,
interpretation, and application of energy performance baselines and specification of models to
estimate savings are important (Parfomak and Lave, 1996; Schiller, 2007). The Model Energy
Efficiency Program Impact Evaluation Guide emphasizes this point:

“A major impact evaluation decision is selecting the baseline. The baseline

defines the conditions, including energy consumption and related emissions that

would have occurred without the subject program. The selection of a baseline

scenario always involves uncertainty because it represents a hypothetical

scenario” (Schiller, 2007, p. 4-2).
Sophisticated engineering, econometric, and mixed-model approaches have been developed to
minimize uncertainty in specification of baseline scenarios and improve methods for evaluation
of DSM program impact. Using these standard approaches, utility analysts and independent
consultants are analyzing metered consumption data, estimating energy demand response to
specific DSM programs, and calculating associated energy savings (Gillingham et al., 2006).
When funding is sufficient, the analyses attempt to quantify free rider, spillover, and rebound
effects. However, the relatively high cost of complex modeling approaches (Schiller, 2007) and
the variability of estimates across utilities justify continued pursuit of simple, valid, transparent
and replicable methods for establishing energy performance baselines and measuring program
impacts. In this paper, we describe a regression analysis approach that aims to satisfy these key
methods criteria — simple, valid, transparent, and replicable — while generating robust estimates
for the measures of interest.

Engineering Models

Empirical models are commonly used to project or estimate energy savings from DSM and other
utility conservation and efficiency programs. Engineering models (such as the EnergyGauge®
software that underpins the HERS Index) are typically constructed at a micro scale and are
particularly useful for delineating the upper bounds of energy-efficiency potential for structural,
mechanical, and electrical features of a home. Output from such models serves as benchmarks
for measuring changes in performance after an appliance or equipment upgrade and/or for
evaluating a new home’s actual performance. They are particularly useful when constructed and
applied at a whole-house systems level. Energy performance measures derived from engineering
models alone, however, are limited in scope of application. They typically do not account for
variability driven by factors independent of the home’s engineered design and building features
(such as occupant demographics and behavior). Furthermore, they cannot be easily scaled up to
provide valid expectations about and estimates of performance at the community or utility level.

Econometric Models

Conversely, econometric models are typically constructed at a macro scale using self-reported
electric utility data on energy consumption and savings (e.g., those supplied to the Energy
Information Administration (EIA) via Form EI1A-861[8]). These models often include data on
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critical energy demand determinants such as service population characteristics, utility rates, and
climate data to estimate DSM program impacts within and across samples of utilities. While
such econometric approaches are well-established and typically robust, they are designed for use
at a macro level and are dependent on the quality of data that have already been aggregated by
individual utilities (e.g., Horowitz, 2007; Arimura et al., 2009), and they may not generate
appropriate estimates of energy savings and cost-effectiveness when scaled down to the
individual household or DSM-program level. Furthermore, methods used by individual utilities
to calculate energy savings vary and the original data used to estimate key model parameters are
often not readily accessible to the empirical research community. Finally, given uncertainties
surrounding the original estimates of key independent variables (e.g., energy savings) applied in
large scale econometric models, it is difficult to know whether changes in energy consumption
via DSM programs are being measured using the most suitable performance baselines.

Are reported energy savings generated from and used by engineering and econometric models
consistent in magnitude and precision with actual efficiency gains or are they simply gross
estimates of change relative to a static baseline? Complex modeling that adjusts consumption
measures for a wide range of independent variables can perform well in terms of producing
precise, robust estimates of savings and isolating DSM program impacts (Parfomak and Lave,
1996; Gillingham et al., 2006). Access to data that would improve or allow scaling of these
analytical methods, however, is often expensive (Schiller, 2007). Central to the premise of this
paper, we think that a more appropriate baseline for adjusting actual energy consumption data
can be constructed to facilitate cost-efficient analyses at the utility scale. We propose that with
this alternative baseline methodology, valid energy savings and impact assessment results can be
achieved using a parsimonious — yet still logical and functional — approach to modeling
residential energy use.

1.4 Annual Community Baselines (ACB) Approach

To improve estimates of energy savings, we propose using a “micro” scale multivariate
regression methodology based on a census of utility and property appraiser household data. We
have applied this approach in the GRU service territory to: 1) establish new measures of energy
performance by constructing annual community energy consumption baselines against which
actual (metered) household-level energy consumption (ekWh) is compared for the years 2004-
2009, and 2) estimate energy savings attributable to each of three DSM programs implemented
in 2007 using ACB estimates as the foundation for year-over-year performance comparisons.

Our proposed methodology is unique in that it: 1) defines a new household-level energy
consumption baseline measure that we think produces more accurate performance measures, 2)
uses a census of publicly-available data for the population of interest, merging metered utility
data with property appraiser data; and 3) uses these census data with the new baseline measure to
construct a simple model for evaluating changes in household-level energy consumption over
time. These performance measures are then applied to estimate what we think are improved
measures of energy savings attributable to each of the three DSM programs evaluated in this
study.

The critical element that distinguishes our proposed energy performance measures is that they
are calculated and interpreted using annual, population-level, comparison-group baselines that
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effectively normalize for community energy consumption patterns in any given year. Year-over-
year changes in household consumption are evaluated relative to the community baseline, so
residuals estimated from the ACB regression directly reflect our definition of meaningful and
relevant energy performance measures (i.e., energy savings). Furthermore, because the annual
performance measures themselves are derived from a regression-adjusted baseline approach, the
data are normalized in such a way that year-over-year performance of individual households or
groups of homes can be compared directly. This prevents the performance impacts of DSM and
other energy conservation programs from being overstated or obscured as a result of non-
program effects (such as economic conditions, rebound, free riders and free drivers, spillover and
so on). In light of debate surrounding the need to account for these effects, which are
“notoriously difficult to measure”, we think that this feature of our model is particularly valuable
(Heins, S. 2006; Herring, 2006).

2. Analysis Design and Methods

In developing our ACB model, we first considered the primary determinants of energy use of
residential customers in a given utility service area, expressed generally in equation (1), and
evaluated whether each was relevant and necessary for inclusion in the detailed analysis.

(1) Et,u = f(Ht,u'St,u' Dt,w Bt,u; Py, Ct)

Absolute energy use (E) of a given residential unit (u) in a specified time period (t) is a function
of: 1) home building structural attributes (H) such as conditioned area and wall type; 2) number
and type of energy systems or components within the home (S) such as HVAC systems, kitchen
appliances, and electronics; 3) resident demographics (D) such as the number of occupants and
their income and education level; 4) resident behavior (B) such as thermostat settings and length
of showers; 5) electricity and natural gas prices (P); and 6) weather and climate variability (C).

2.1 Scope

One of our central aims is to develop a reliable protocol for measuring energy savings that uses
commonly-available data sources, is practical in application, and is readily portable. A census of
the available and reliable data is included without restrictions on or distortions of subpopulations
within. It is designed to quantify true programmatic impacts on the community and utility
service area within the context of evolving social norms and economic drivers related to energy
consumption. Selection of independent variables for estimating annual baselines represents the
simplest form that can be used to produce valid, statistically sound results. It is important to note
that the ACBs are complementary to, but not direct substitutes for conventional “business-as-
usual” baselines; they provide another layer of information that we argue is critical for effective
construction of baselines or reference scenarios.

The ACB technique provides a measure of savings in terms of reduced energy consumption that
is a function of but not synonymous with "increased efficiency"”. In addition, this technique
applies specifically to site energy use of buildings, not accounting for primary energy associated
with losses in production and transmission from source to site. To translate analysis outcomes to
reflect utility scale impacts, factors related to operational efficiencies must be considered but are
beyond the scope of this paper.
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2.2 Data

Sources

To construct and test our model, data were requested and obtained from three sources: the
Alachua County Property Appraiser (ACPA); Gainesville Regional Utilities (GRU), and the
National Climatic Data Center (NCDC). ACPA provided data on the physical characteristics,
location, and sales of all properties in Alachua County, Florida as of November 2009. GRU
provided two distinct datasets. The first included monthly, account-level, electric, natural gas and
water consumption data for each residential and commercial customer from 1996 through
2009[9]. The second GRU dataset included information about all DSM program participants
through September 2009. Monthly heating and cooling degree day data for 1996 through 2009
were obtained from the NCDC.

In identifying data to use in the analysis, fields were selected based on availability, accuracy, and
their known relation to residential energy consumption. Monthly, account level, electric and
natural gas data linked to the premise, customer identification number, and physical address were
selected from the GRU database. Physical address, building type, US Department of Revenue
(DOR) tax code, parcel number, number of bedrooms, number of bathrooms, conditioned floor
area, year built and residential neighborhood listing were selected from the ACPA database.
Physical address was used to link and merge the two databases to create an analysis dataset.
GRU DSM program data including the type of incentive, installation date, and incentive amount
were tagged to the analysis dataset by premise and customer numbers. Table 1 lists the fields
included in each of the original databases.

Table 1: Original databases from which full analysis dataset was generated

ACPA Database GRU Consumption  GRU Rebate NCDC Database
Database Database

Parcel Number Premise Number Premise Number Heating Degree
Days

Physical Address Customer Number Customer Number Cooling Degree
Days

Building Type Physical Address Rebate Type Year

DOR Code Meter read date Rebate Amount Month

Number of Bedrooms  Service Type Installation Date

Number of Bathrooms Billed Consumption
Conditioned Area

Year Built

Neighborhood Code

Cleaning and Screening

The 2009 ACPA database listed 51,746 single family residential units. Of the ACPA units
35,091 were identified by physical address to be GRU customers during calendar year 2009. For
purposes of this study these single-family homes formed a census list from which annual subsets
were created for calendar years 2004 through 2009 (excluding 2007). For each annual subset,
homes were screened to ensure that there were at least 350 and no more than 380 days of electric
consumption data on record and that the necessary property appraisal data were available.
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Monthly electric and natural gas consumption were combined and expressed in units of
equivalent kilowatt hours (ekWh) to quantify total annual energy use. Annual consumption data
were normalized to represent the full calendar year by taking average daily use for the number of
days recorded and multiplying by 365. Residential units consuming less than 3,000 ekWh per
year or more than 65,000 ekWh per year were removed from the dataset as either unoccupied
homes or outliers. A schematic representation of the screening process and listing of the full
populations of single-family residential units that met all screening criteria to be included in five
calendar year databases from 2004 through 2009 (excluding 2007) are shown in Figure 1.

/ Units with Complete\

Energy and Appraisal
C Single-Family, Data
S-Ingle- Faml-ly ; Detached Residential 23,180 (2004)
Residential Units in Units in GRU Service ’
ACPA Database Terri 22,832 (2005)
erritory 22,762 (2006)
51,746 35,001 ,
25,050 (2008)

\_  28401(2009 J

Figure 1: Diagram of initial data screening process to ensure no missing data or unoccupied homes.

2.3 ACB Model Specification

Each calendar year dataset was analyzed independently using multivariate regression, equation
(2), to estimate predicted home energy use values for each residential unit in the census.

(2)  ECiy = Bo + B1(Size Factorfl) + B,(Ages.,) + Bz(Neighborhood,) + €,
where Size Factorff = f(conditioned area, # of bedrooms, # of bathrooms)

Annual energy consumption (EC) is the dependent variable with size factor (conditioned area,
number of bedrooms and number of bathrooms), year built, and neighborhood code as
independent variables. The number of bedrooms and bathrooms, and square feet of conditioned
area are important explanatory factors for energy use because they are indicators of the number
of people living in each home and HVAC demand, respectively. Using a principal components
analysis (PCA), we transformed these highly correlated, yet distinct measures of home size into a
single "size factor" predictor variable. Year built is also considered an important energy use
predictor variable as it captures the building code under which the home was constructed and the
common building practice used in that particular time period. To transform it to a more
meaningful continuous value for use in regression, the year built variable was converted to home
age by subtracting year built from the analysis year (2010). The property appraisal
neighborhood code was selected as a geographic indicator for resident behavior and demographic
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variables (census block or zip code may substitute if necessary but may increase error in the
model) and as an indicator of the materials, construction techniques and workmanship used in
subsets of houses. These factors (size factor, age, and neighborhood code) were used to
complete a regression analysis giving predicted energy use values for each home in each of the
analysis years. These predicted values represent the Annual Community Baseline for absolute
energy consumption (EC;,,) in each year for each residential unit.

Residuals, €,, derived from this ACB regression (equation (2)) are then interpreted as annual
energy performance measures for each residential unit in each year; mathematically, they are
calculated as actual minus predicted energy use

(3) ét,u = (ECt,u - Ez‘t,u )

Overall annual performance of a given subset (n) of residential units in a given year (t) is
calculated as the mean of the individual performance indicators (i.e., residuals) for that particular
subset

(4) a = (ZZ=1 ét,u/nt)

The absolute and relative year-over-year differences in the residuals for individual homes or
subgroups of homes, equations (5a) and (5b), respectively, are then calculated to estimate
changes in household energy performance over time

(5a) A, = (gtpost,u - gtpre,u)

(5b) A(ét,u/ﬁt,u) = (étpost,u/gz‘tpost,u) - (étpre,u/ﬁtpre,u)

A second regression is used to estimate the magnitude and statistical significance of change in
energy use (i.e., savings) for any given subset of the population relative to the census savings

(6) ESD,post—pre = Yo+t (DummY) +é&

For this regression, equation (6), which essentially applies a basic analysis of variance statistical
test, the changes in residuals between one year and the next for each residential unit (calculated
using equations (5a) and (5b)) are used as the dependent variables and a dummy variable is used
as the explanatory variable to distinguish the population sub-group of interest (coded ‘1°) from
all other residential homes in the population (coded ‘0’). The parameter coefficient, y;,
estimated for the rebate dummy tells us the magnitude and direction of change in energy use, or
energy savings, ESp post-pre (SUCh that a negative coefficient represents a decrease in energy
use/increase in performance/positive energy savings for sub-group of interest while a positive
change represents an increase in energy use/decrease in performance/negative energy savings).
The p-test on the F-statistic for this regression provides a measure of statistical significance for
these energy savings estimates.

2.4 Application of ACB to DSM

GRU’s DSM programs were considered individually (single upgrades) for their numbers of
participating households during calendar year 2007. Three programs were selected for
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evaluation: the Duct Sealing Rebate Program, the Refrigerator Buyback Program, and the Super
SEER AJ/C Program. The Duct Sealing Rebate Program incentivizes customers to repair leaky
ductwork to reduce pressure differential and associated air infiltration. The Refrigerator
Buyback Program pays customers to dispose of secondary and unnecessary refrigerators and
freezers to reduce energy consumption. The Super SEER A/C Rebate Program offers customers
assistance in upgrading to HVAC equipment with a Seasonal Energy Efficiency Ratio (SEER) of
16+ or higher. GRU data were used to identify households that: 1) participated in one of the
three selected programs during 2007; and 2) had not participated in any other GRU DSM
programs. Homes that met these criteria were tagged; the number of tagged homes for each
DSM program is shown in Table 2. For purposes of this analysis, the calendar year databases
covering 2004 through 2009 (excluding 2007) were aggregated into a single database.

Table 2: Population sizes of residential units for rebate analysis

Rebate Type N

Duct Sealing Rebate 123
Refrigerator Buyback 294
Super SEER A/C Rebate 148
Total 565

In addition to ACB, three conventional techniques were used to estimate energy savings
attributable to the rebate programs. Energy savings estimates from the conventional techniques
were then compared to those of the ACB approach to evaluate its relative effectiveness. For the
purposes of this analysis, as in equation (6), 2006 performance is used as the reference or pre-
installation standard, 2007 is the DSM intervention year, and 2008 and 2009 are the post-
installation years. (Note that the term “baseline year” in this context refers to the conventional
definition of the conditions that exist prior to an efficiency upgrade or other change: pre-
installation. In this context, the ACB baseline year and reporting period years are all estimated
using ACB regression, so this analysis technique actually includes four “baselines”. Time Series,
Time Series with Weather Normalized Annual Consumption (NAC), Time Series and
Comparison Group, and Annual Community Baseline analyses were tested. (Explanations of
these approaches were adapted from Schiller, 2007.)

e Time Series analysis was used to estimate savings by taking the difference between post
upgrade energy use and pre upgrade energy use.

Time Series Estimate = Post - Pre

e Time Series NAC used data normalized with heating and cooling degree data to
calculate savings by taking the difference between post upgrade and pre upgrade energy
use.

Time Series NAC = Postyac - Prenac

e Time Series and Comparison Group analysis uses a difference in difference technique
to estimate energy saving. The difference between average annual consumption of the
census before and after upgrades to the sample population is subtracted from the post and
pre upgrade consumption of the participants.
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Time Series and Comparisons = (POStparticipant = Pr€participant) = (POSteensus = Pr€census)

e Annual Community Baseline uses multivariate regression to create predicted home
energy use values for each home in the census. Homes that participated in rebate
programs were compared by taking the difference of their residuals (actual minus
predicted values) before and after energy conservation upgrades. (These savings
estimates were then used in a second regression analysis to estimate program impact, so
they are similar to the commonly-used difference-in-difference approach, but with an
additional difference adjustment using the first regression expression residuals) (Meyer,
1995).

ACB Analysis = (Actualpest - Predictedpost) - (Actualye - Predictedpre)

3. Results and Discussion

Each annual baseline graphed in Figure 2 represents the ordered range of expected energy use for
DSM participant homes. The figure displays variability in expected consumption among homes
and across years (as we expect from variability in climate, economic conditions, etc. across
years, but also from changes in performance). Although these baselines only represent the DSM
homes’ performance baselines, they have been adjusted through the regression analysis using the
entire census of homes. This effectively expands the number of comparables for each home to
the maximum extent possible within the census. The area under each baseline represents the
total energy consumption predicted for the DSM group in a given year. If the full census ACBs
were plotted, their shapes would be similar to those shown in Figure 2 and the area under each
baseline would represent the actual energy consumption for the given year.

50,000
T 45,000 /
N
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= 40,000
3
| J
g 35,000 /
3 —2004
> 30,000 2005
Ta,; 25,000 2006
(=4}
£ 20,000 —2008
3 2009
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[ =
& 5,000
0

Figure 2: Annual energy use baseline value ranges presented by year for 2007 GRU rebate participants.
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In Table 3, for each of the rebate programs the “Difference” values are equal to the average
residuals in absolute terms while the “% Difference” are the residuals specified in relative terms
so that it easier to interpret them as performance measures in a given year (i.e., the degree to
which homes are consuming above or below the baseline). These values only compare within
years between each DSM group and the entire population as represented by the baseline. In the
years prior to 2007, the DSM participant homes were consuming more energy on average as
determined by the ACB than their peer groups. In post-installation years (2008 and 2009) DSM
participants reduced their consumption to points close to or below the baselines. These numbers
are only annual performance indicators, not estimates of change in performance or programs
savings. They can be compared across time within the context of the shifting annual baselines,
but they alone cannot be used to estimate the effect of DSM participation on change in energy
use and performance.

Table 3: DSM program participants’ actual energy use (ekWh) relative to ACB-predicted energy use, 2004-2009.

Program 2004 2005 2006 2007 2008 2009
Duct Sealing Rebate Actual 23,966 23,905 23,169 14,853 19,324
n=123 Baseline 23,152 22,812 21,879 15,281 19,593
Difference 814 1,093 1,290 -428 -268
% Difference 3.52% 4.79% 5.89% -2.80% -1.37%
Refrigerator Buyback | Actual 23,326 23,817 22,999 15,401 19,822
n=294 Baseline 23,017 22,682 21,891 15,467 19,502
Difference 308 1,135 1,108 -66 320
% Difference 1.34% 5.00% 5.06% -0.43% 1.64%
Super SEER A/C Actual 23030 22,569 21,922 14,348 18,466
Rebate
n=148 Baseline 22,437 22,046 21,115 14,804 19,010
Difference 593 523 808 -456 -544
% Difference 264% 2.37% 3.83% -3.08% -2.86%

Figures 3-5 provide a visual representation of results in Table 5 and illustrate how the relative
performance of DSM program participants changes from year to year. Notice that in all three
figures, DSM participants’ performance improved after 2007 relative to previous years, which
indicates that the DSM programs may have had a significant effect on performance in 2008 and
2009. It is also worth noting that year over year changes in relative performance of the DSM
participant groups are small relative to the changes in the ACBs.
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Figure 3: Average annual energy use for 2007 GRU Duct Sealing Rebate Program Participants as
compared to their average Annual Community Baselines.
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Figure 4: Average annual energy use for 2007 GRU Refrigerator Buyback Program participants as
compared to their average Annual Community Baselines.
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Figure 5: Average annual energy use for 2007 GRU Super SEER A/C Rebate Program Participants as
compared to their average Annual Community Baselines.

Table 4 shows the estimates of energy savings attributable to each DSM program using each of
the four analysis techniques. Recall that in all analyses, 2006 represents the pre-installation or
reference year and 2008 and 2009 are the reporting period years. Results suggest that
conventional analysis approaches are likely to overestimate savings significantly, ranging from
an average across reference years and techniques of 2.5 times higher when applied to the Super
SEER A/C Rebate to 4.9 times higher when applied to the Duct Sealing Rebate. Overall, ACB
appears to give more stable savings estimates when compared across the two post-installation
year analyses. For example, if time series analysis is used, an average savings of 10,351
ekWh/yr would be reported attributable to the Super SEER A/C Rebate program for the 2008
reporting period while the estimate for 2009 drops ~56% to 4,476 ekWh/yr; future reporting
period estimates should improve our confidence in making this claim. Time series analysis
results in the largest discrepancy in savings estimates for the two reporting periods, followed by
time series analysis of weather normalized annual consumption (NAC). Although commonly
used in the utility industry, these two techniques are understood by experts to be weak, if not
unacceptable, for reports of program impacts (Schiller, 2007).
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Table 4: Estimates of energy savings (ekWh/yr) across DSM programs using conventional techniques and ACB.

Sample Analysis Time Series  Time Series
Program Size Year Time Series NAC Comparison ACB
2008 -8,066*** -6,846*** -1,599*** -1,136**
Duct Sealing 2009 -3,016** -4,493** -1,039** -572
123
Rebate
Difference 5,050 2,353 560 564
in estimates
2008 -7,622%** -6,463*** -1,155*** -959***
Refrigerator 2009 -3,450%** -4,828*** -1,473%** -1,220%**
294
Buyback Diff
pitierence 4,172 1,635 318 261
In estimates
2008 -10,351*** -9,122%** -3,884*** -2,786***
Super SEER 2009 47765 .6316%F% D 79gRRk D 1Qpwe
A/C Rebate 48 : : : : :
!Z)lfference 5,575 2,806 1,085 595
in estimates

Note: * indicates statistical significance at 10%, ** at 5%, and *** at 1% level.

Time series with comparison groups was the third comparison technique applied. In this case the
entire census was used as the comparison group and DSM participant homes were evaluated
based on census average energy use before and after program implementation. When homes are
compared with others in the same geographic and utility service area, effects of energy prices
and weather are inherently incorporated (because in any given time period, all homes experience
the same prices and weather), so data are not normalized using price or climate data for this and
the ACB analysis. Although this technique can provide more realistic estimates of savings than
time series or time series NAC, results are highly dependent on data screening methods used to
create comparison groups. Figures 6-8 graph the results in Table 6 as estimated energy savings
across the four analysis techniques; they reinforce the potential for wide variation in deemed
program impact as a result of the analysis technique used to adjust actual energy use and estimate
savings.

Table 5 shows estimates for energy savings associated with the three DSM programs derived
using ACB analysis. Estimates are presented in terms of both absolute and relative (percentage)
savings. Table 5 also includes estimates for the effect (i.e., magnitude and significance) of the
DSM on changes in annual performance and estimates the extent to which energy savings are
directly attributable to the DSM program. Both the Refrigerator Buyback and the Super SEER
A/C Rebate programs showed statistically significant changes in energy use associated with the
efficiency upgrades.

(1t should be noted that the Duct Sealing Rebate Program returned marginally significant savings
in 2008 and savings that were not statistically significant in 2009.)
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Figure 6: 2007 GRU Duct Sealing Program savings estimates using various analysis methods
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Figure 7: 2007 GRU Refrigerator Buyback Program savings estimates using various analysis methods.
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Figure 8: 2007 GRU Refrigerator Buyback Program savings estimates using various analysis methods

Table 5: Results of Rebate Savings Analysis using ACB technique, given as absolute and

relative savings (ekwh).

Sample  Analysis ACB Savings ACB Savings

Program Size Year (absolute) (relative)
Duct Sealing 18 2008 1 136" 5.1%
Rebate 2009 o 15%
Refrigerator 294 2008 g5 -5.5% "
Buyback 009 o0 64N
Super SEER 148 2008 5qggmr -126%
A/C Rebate 2009 2101 8.9%"™"

Note: * indicates statistical significance at 10%, ** at 5%, and *** at 1% level.
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4. Conclusions

Estimates of potential savings from energy efficiency programs are the key drivers for
homeowner decision making and demand side management program design. If careful attention
IS not given to data screening, baseline development, model specification and final analysis,
flawed estimates can lead to unexpectedly long payback periods for both utilities and their
customers. Deemed savings for building retrofits are generally based on engineering analyses
and typically do not take into account occupant behavior and other factors likely to affect
performance. Savings measured using simple time-series modeling techniques do not properly
account for environmental, economic, and social trends. Advanced econometric and mixed
models that attempt to compare residential performance across geographic regions based on
utility reported savings are typically at an aggregate level and may have flawed input that can
distort impact estimates.

The proposed method of Annual Community Baseline analysis offers a tool that can provide
accurate estimates of year-over-year changes in household energy consumption that in turn, can
be used to fairly evaluate the impact of various energy conservation efforts. The ACB regression
analysis approach is a relatively inexpensive, simple, rigorous, transparent, and replicable
method for generating robust estimates of performance impacts of any energy conservation
program. For utilities ACB analysis can be used to more effectively compare and prioritize their
demand side management programs as shown in this study. We believe that ACB can provide an
effective means to accurately depict real-world energy savings impacts and that it can work
equally well for evaluating weatherization in existing homes or “green” certification programs
applied to new housing.

Notes

1. ENERGY STAR is a labeling program of the U.S. Environmental Protection Agency designed to promote the
adoption of energy efficient technologies in lighting, appliances, electronics, equipment, homes, and industrial
buildings to reduce greenhouse gas emissions. See www.energystar.gov for more information.

2. Builders Challenge is a program of the U.S. Department of Energy that provides incentives — research results
and marketing tools — for homebuilders to construct homes that excel in energy performance. The program’s
goal is to expand the market for “cost-neutral, net-zero energy homes” in the U.S. market. See
www1.eere.energy.gov/buildings/challenge for more information.

3. The Weatherization Assistance Program (WAP) is a funding program administered through the U.S.
Department of Energy Office of Energy Efficiency & Renewable Energy to help low-income families reduce
their energy bills through improvements in home energy efficiency. See
http://www1.eere.energy.gov/wip/wap.html for more information.

4. EnergyGauge® is a software tool for analyzing buildings’ energy use performance, compliance with building
codes, and economics of energy efficiency upgrades. See http://www.energygauge.com for more information.

5. The HERS® Index is a relative energy use index for rating buildings. A “HERS Index of 100 represents the
energy use of the "American Standard Building" and an Index of 0 (zero) indicates that the Proposed Building
uses no net purchased energy (a Zero Energy Building)”. For additional details, see www.natresnet.org.

6. ENERGY STAR “Federal Tax Credits for Energy Efficiency” at
http://www.energystar.gov/index.cfm?c=tax_credits.tx_index.

7. Gainesville Regional Utilities (GRU) “Home Performance with ENERGY STAR® Program” at
http://www.gru.com/YourHome/Conservation/Energy/Rebates/homePerformance.jsp.
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8. All electric utilities in the United States, its territories, and Puerto Rico are required to submit Form EIA-861
(Annual Electric Power Industry Report) each year to the U.S. Department of Energy, Energy Information
Administration. It can be viewed/downloaded at
http://www.eia.doe.gov/cneaf/electricity/forms/eia861/eia861.pdf. Instructions for completing the form,
including details about how energy savings should be measured, can be viewed/downloaded at
http://www.eia.doe.gov/cneaf/electricity/forms/eia861/eia861linstr.pdf.

9. Due to data reliability and availability issues in 2007, these consumption data were not used in this study.
Homes that were upgraded in 2007 were analyzed based on their metered consumption in years before (2006)
and after (2008 and 2009) the upgrades.
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