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Dear Reader:

The 2001 mandate from the University of Florida Faculty Senate and President to the
Sustainability Task Force (STF) was to design a plan by which UF would become “a global
leader in sustainability.” Accordingly, the STF developed a set of visionary recommendations
that were subsequently ratified by the Faculty Senate and affirmed by then UF President Charles
Young.

Among the 45 pioneering recommendations set forth by the STF was the sweeping directive to
“map all UF-related greenhouse gas (GHG) emissions and develop a strategy for carbon
neutrality with an ambitious, yet realistic timeline.”

This report details the results of a study commissioned by the UF Office of Sustainability for the
STF in response to the challenge to become carbon neutral. The study was performed by the
International Carbon Bank and Exchange, Inc. and staff from Greening UF. Advanced work by
the Rocky Mountain Institute (RMI) performed under contract with Dr. David Orr at Oberlin
College provided a basis by which assumptions were made and analyzed and data compared.

While it is important to not under estimate the difficulty facing UF—or any organization—
undertaking this seemingly daunting task, it is heartening to note that the UF study’s findings
compare favorably with those made by RMI: that UF can achieve carbon-neutrality in 20-30
years and show a revenue-positive result in the process.

The study also included developing an online relational database that has been loaded with ten
years of energy-use data for every facility on the University of Florida campus. The program
allows users to determine the GHG emissions from each facility—and project the cost savings
from various mitigative measures capitalized over time.

Hopefully, this study can help inform the emerging conversation related to the University of
Florida’s efficient use of available fiscal and environmental resources while combating the

growing threat to global security posed by climate change.

Once again, the University of Florida is poised to grasp a global leadership position in a
significantly important issue of our time. Perhaps this study is a first step towards that position.

Sincerely,

Dave Newport
Staff to the Sustainability Task Force




Executive Summary
How to determine a date by which UF can cost effectively become carbon neutral.

This report introduces a study of options by which the University of Florida can reduce its Greenhouse
Gas (GHG) emissions to the point where it has no net impact on climate change. Our findings show
that significant on-campus reductions can be achieved cost effectively through appropriately scheduled
infrastructure renovation, equipment upgrade and advancing a new energy management approach.
Enhancing carbon sinks on UF lands, initiating local projects and purchasing emissions reductions on
the market can be used to offset any remaining emissions.

Carbon Neutral Scenarios
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This report looked at GHG activities on the main UF campus only and analyzed emissions associated
with building energy consumption and from the UF vehicle fleet. These two items likely represent 80%
of GHG emissions incurred by routine campus operations.

As the majority of the GHG emissions associated with campus operations come from energy
consumption, a CO2-neutral situation can be achieved by reducing electrical demand of buildings,
greening the energy supply and by sequestering and offsetting remaining emissions. To reduce
emission from the vehicle fleet, available options suggest a progressive change to hybrid and other
alternatively powered vehicles, and a re-absorption of any remaining emissions in alternate reduction
activities.

The study discovered that existing campus energy initiatives routinely save money and that simply
enhancing these programs can account for over half of possible reductions. The report also found that
typically two dollars or more are saved for every dollar invested in energy programs and that up to a
40% reduction in energy demand can be realized while positively improving the operational budget.

The study concludes that achieving carbon neutrality is possible at no net cost, and, if desired,
attainable within two decades. The study found that most of the risk lies in the execution of the plan,
and as such, the report identifies a dedicated mission with an independent budget as key ingredients for
success.



Campus GHG Profile

CY 2001 UF GHG Profile - 519,623 tCO2 Function tCO2
Coolant Gases Gasoline & kWh 264,868
(HFC's) Diesel Steam 150,000
Natural Gas 0.86% 0.64% LNG 8,943
Steam 1.72% /—Jg tgf/fl Coolant Gases 4,489
28.87% i Gasoline & Diesel 3,351
Potable Water Jet Fuel 601
W% Potable Water 767
Other Other 86,604

kKWh 16.67%
ST Total 519,623

'\

Precise information was available for emission rates associated with kWh use, natural gas, potable
water, gasoline, diesel and jet-fuel consumption. Greenhouse gas emissions estimates were created for
the use of steam and chiller coolant gases (CFC’s & HFC’s).

A miscellaneous category named “other” serves as a placeholder for emissions not included in this
initial inventory such as those from paint and fertilizer use, lab and medical applications, emissions
associated with various forms of waste disposal, construction and vendor activity on the campus.

As for emissions reductions, the study made no attempt to account for the bio-sequestration potential
of UF owned lands, which may prove to hold pleasant surprises. A future GHG inventory should
address greenhouse impacts from UF’s waste recovery practices, commutes to and from campus by
students, faculty and employees, and air transport to conferences and UF business, study abroad
programs, athletic events and so on, as is becoming the norm in academic GHG reporting.

Though the greenhouse emissions identified in this study are the ones typically recognized under
international GHG accounting principles, further evaluation is needed to determine the actual numbers
in the Main UF Campus as well as across the entire organization for all greenhouse sources and sinks.

Boundary — Main Campus Emissions in tCO2 Emissions in tCO2 Water in Gal Water in tonne
Students per student/yr per ft2/yr per student/yr per student/yr

40,000 13 0.0291 26,272 99

Salaried Employees per employeelyr per day per day per day
10,000 52 1,424 2,879,088 10,899

Budget (CY 2001) per budget $/yr per hour per hour per hour
1,857,000,000 0.000280 59 119,962 454
Humans served per human/yr per human/day per human/day per human/day
50,000 10.39 0.028 58 0.22

UF Credit Hour per credit hour per credit hour per credit hour
1,222,673 0.42 859 3.25



Campus Electricity

Consumption of electricity on the UF Campus was measured using all available meter data and
includes parking garages, chiller plants, pump houses, sports facilities and student housing.

From 1996 to 2001, absolute kWh consumption increased by 6.2%. Over that period, however,
consumption relative to square footage decreased every year, eventually reducing by 3.5%. This
indicates a successful effort in energy management policies, especially considering Campus square
footage grew by 14% in those six years.

Based on this data, two conclusions can be drawn. First, kWh consumption is increasing as the campus
expands. Second, demand side management (DSM) policies are lowering relative demand, but can’t
keep up with campus growth.

The Third Draft of the University of Florida Comprehensive Master Plan indicates that an additional
16% gross square footage (GSF) is anticipated on the main UF Campus over the next 10 years. Under
a ‘business as usual’ scenario, this would likely lead to a notable increase in MWh consumption.

For the most part, cost and emission rates associated with electrical consumption over the next two
decades are influenced by circumstances on the generation side (no control), the trend towards
electronization of the work environment (some control), and the energy management approach the
University chooses (most control).

MWh Consumption History in CY Building Growth vs MWh Consumption
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Campus Buildings

The kWh analysis focused on the 398 buildings equipped with electrical meters. Another 553 campus
buildings have no electrical meters or are connected to buildings with meters.

Buildings with meters accounted for 14,169,525 of the 17,858,737 square foot (79%) of campus
building space. Metered space includes attics, closets, hallways, indoor and outdoor staircases etc.,
with about 82% of square footage listed as interior, conditioned space.

The study found that the 50 largest buildings on campus accounted for 40% of the square footage and
42% of the CO2 produced in CY 2001. On the other end of the spectrum, the 50 smallest buildings
accounted for 0.2% of square footage and 0.6% of CO2 production.

CY 2001 kWh COz2 Intensity of Building Stock

G d by the Decade of Construction. . .
4,000,000 (OEpIER] PEANE Bttt ISt Notable is that in CY 2001

the CO2 intensity of

3,500,000 [
building stock from 1900
3,000,000 ~1950’s averages 26.38
2,500,000 Lbs CO2/ft2, while the
CO2 intensity of buildings
2,000,000 M g
1960 ~ 2000 averages
1,500,000 57.59 Lbs CO2/ft2.
1,000,000
500,000 Bulld’lng stock from the
1970’s has the highest
0 CO2 intensity at 68.20 Lbs
1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 CO/f2lyr.
—— Building Stock in ft2 —e— Lbs CO2 per ft2/yr
Building Name Area in ft2 MWh in 2001 tCO2 in 2001 Lbs CO2/ft2 Building Year
WM A. SHANDS TEACHING HOSPITAL 526,310 12,730 9,112 38.18 1956
DENTAL SCIENCE 503,640 7,786 5,573 24.40 1975
STETSON MEDICAL SCIENCES 379,040 5,239 3,750 21.82 1956
COMMUNICORE 300,690 5,545 3,970 29.11 1975
STEPHEN C. OCONNELL CENTER 295,990 4,326 3,096 23.07 1980
J. WAYNE REITZ UNION 283,030 8,876 6,354 49.50 1967
ACADEMIC RESEARCH BUILDING 240,660 8,084 5,787 53.02 1989
PHYSICS BUILDING 232,730 5,406 3,870 36.66 1998
BRAIN INSTITUTE 206,789 7,425 5,315 56.67 1998
RALPH D. TURLINGTON HALL 180,610 663 475 5.79 1977
FLORIDA GYMNASIUM 162,560 1,568 1,122 15.22 1949
ANNIE D. BROWARD HALL 159,100 2,467 1,766 24.48 1954
JOSEPH WEIL HALL 151,100 2,119 1,517 2213 1950
RAE O. WEIMER HALL 145,155 2,683 1,921 29.17 1980
ENGINEERING 140,190 2,883 2,064 32.46 1997
VET MED ACADEMIC WING 139,450 4,432 3,172 50.16 1996
BEN HILL GRIFFIN STADIUM 136,340 1,864 1,335 21.58 1930
SPESSARD L. HOLLAND LAW CENTR 132,620 1,629 1,166 19.39 1968
SHANDS MEDICAL PLAZA A 126,200 2,154 1,542 26.95 1991
VET MED TEACHING HOSPITAL 123,170 10,634 7,612 136.27 1977
Total 4,565,374 98,513 70,519 35.80 1973
Relative to Campus Total 25.56% 26.62% 26.62% +6% +3yr
Campus Total 17,858,737 369,951 264,868 33.73 1970

Profile of the “20 largest buildings” excludes parking garages



Campus Vehicles

Annual fuel data from the UF Vehicle Fleet was provided by Physical Plant Motor Pool and reflects
consumption data generated by the TRAK fueling system and other methods. The UF fleet
includes 2,133 buses, trucks, tractors, excavators, mowers, airboats, service vehicles, vans, SUV’s, and
passenger vehicles that are owned, leased or rented by UF, most of which are attached to the main
campus. Fuel purchased while on the road is not reflected in this data set.

The two primary fuels provided by the Motor Pool are
gasoline and diesel. Fuel and mileage of a particular

vehicle are recorded when the user inserts a special | %

key to activate the pump. In addition, the Aviation 3500
Department of the University Athletic Association | 2sw

2000

estimated 62,138 gallons of A-1 Jet Fuel (Kerosene), | ‘5o
based on 300.4 logged flight hours in CY 2001. 1000

500 -

tCO2 from fuel use - CY2001

‘DKerosene B Diesel OGasoline MTotal ‘

Historical data was spotty, so we opted to use a small,
but highly detailed 4-month record set that TRAK
gathered since November 1, 2001. A sample reading showed that 73% of the vehicle fleet drove less
than 10 miles a day and performed at -42% of their EPA rated City MPG. This is likely due to the short
driving distances and low campus speed limit.

The vehicle fleet represents less than 1% of UF’s GHG emissions profile, on the other hand, the fleet
produces the majority of emissions directly experienced by the campus community. On average, fleet
activities introduce 16,251 Lbs of CO2, CH4, NOx, SOx, PM-10 and other compounds into the UF
airshed every day, mostly between 7AM and SPM.

Most of campus vehicle emissions occur while vehicles are at low speed. Hybrid vehicles typically
rely on regenerative braking and battery functions to move around at low speeds and can reduce CO2
output by half, and NOXx, particulate matter (PM) and others by 75%.

2001 UF Passenger Vehicle Make Up __--

Nissan Toyota HONDA CIvIC GX 1714, autocvT  |lSULEV o |

M?f/da 1% 1% Chrysler [TOYOTA RAV4 EV |Etectric |zEV |7 |

GM ° 21% TOYOTA PRIUS |1.5L4, autocvT  |suLev |52 |
32% HONDA CIVIC HX |[1.7L 4, manual  |uLEV |3e |
TOYOTA ECHO |[1.5L 4, manual |LEV |34 |

Ford INISSAN SENTRACA  |[1.8L 4, auto lsuLev ez |

OChrysler BFord OGM OMazda B Nissan 4I:|4'I'/(:)yota ‘ |HONDA cvie ”1'7L 4, manval ”ULEV ”33 |
MITSUBISHI MIRAGE  |[1.5L 4, manual |ILEV B2 |

Sample of low emissions passenger vehicles available in U.S. market

Year

Engine size (L)

Pistons

Mile/day

Gallon/day

MPG/day

kgCO2/day

IbsCO2/day

1992

4.63

6.83

10.34

1.15

9.02

10.03

22.1

Above data represents CY 2001 activity profile based on a sample reading (5%) of passenger vehicles in the UF Fleet.



Campus Water

The University of Florida campus consumes 120,000 gallon of drinking quality water per hour, all year
around. Most of this water is provided by Gainesville Regional Utilities (GRU), who tap it directly
from the Floridan Aquifer using any of 14 local wells. Because the aquifer holds some of purest water
in the country it requires only minimal treatment and the process of extraction, filtering and
distribution results in only a small amount of greenhouse gases to UF’s GHG budget.

The total amount of water needed to service one student is an impressive 219,000 Lbs/yr. The campus
itself consumes a whopping 2.8 million gallons of fresh water a day, only a small amount of which is
actually consumed as drinking water. Acquiring this water is so easy that to go use up over a billion
gallons, only 770 tCO2 is incurred on UF’s GHG bottom line.

Yet with water as one of the critical issues of the future
for Florida and the planet, it seems logical to take the
opportunity and explore ways to become more water
efficient. One idea is to create ways to conserve water
and to harvest, store and make use of rainwater falling
on the campus area.

On average, the campus receives three times more
rainwater per year than it purchases from GRU. Yet,
with the exception of Rinker Hall, there are no
comprehensive rainwater recovery systems in place on
the UF campus. Rainwater can easily be caught using
roofs and other surfaces and led to hidden rainwater filtering systems. The rainwater could then be
used in toilets, irrigation, cooling and other mass applications. As is, UF takes from the underground
aquifer a third of what it receives from the heavens each year.

Floridan
Aquifer

Image by: St. John Water Management District.

Potable Water CY 2001
total gallon tCO2 total from water use total cost water
| 1,050,867,018 766.95 $ 914,254
Rain Water CY 2001
area UF Main Campus, in acres ft2 per acre average annual rainfall, in foot
| 1,966 43,560 4.29|
total rainwater, in gallons % bought vs 'received'
| 2,750,957,294 38.20%)
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Reduction Technologies
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Reduction Technologies - Lighting

Lighting accounts for 20% to 25% of all electricity consumed in the United States. Meanwhile, in a
typical commercial lighting installation, 50% or more of the lumens are wasted by obsolete equipment,
inadequate maintenance or inefficient use.

For the purpose of this discussion,
because of the many similarities
technologies developed during the

we characterize the UF Campus as a commercial establishment
in building and occupancy make-up. The good news is that
past 10 years can help cut lighting costs 30% to 60% while

enhancing lighting quality and reducing environmental impacts.

Using lighting as a way to reduce
costs and lower GHG’s is
immediately attractively because
upgrades can be  performed
incrementally with comparatively
small budgets, the payback time is
short, and the procedure can be
performed quickly with little
intrusion to day-to-day Campus
operations.

UF PPD is continually upgrading li

Saving lighting energy requires either reducing electricity consumed by the light
source or reducing the length of time the light source is on. This can be
accomplished by:

- Lowering wattage, which involves replacing lamps or entire
fixtures.

- Reducing the light source's on-time, which means improving
lighting controls and educating users to turn off unneeded lights.

- Using daylighting, which reduces energy consumption by
replacing electric lights with natural light.

- Performing simple maintenance, which preserves illumination
and light quality and allows lower illumination levels.

ghts as budgets permit and indicates it could do more. A recent

example is the re-lamping of Elmore Hall, finished on October 30, 2001. A total of 267 new light
fixtures, mostly T8’s with improved electronic ballasts, were introduced in the lobby, hallways,

Select GHG Migitation Scenario:

UF Wide 7

Al Units |
ELMORE HALL FOR ADMIN SERMICES ;I
Building Numberl

Compound | Baseline Start Year | Projection End Year

IOOZ VI IZEIEI'I VI IZUDB VI

conference and mailrooms. The upgrade
has an expected payback period of 3.28
year and reduces yearly operational costs
by $2,666 and lowers annual GHG’s by 27
tCO2. When this new lighting technology is
in place for seven years, the project ROI is

Savings Easines 2-3 .
Start . P || SRR par Savings selmg | Net Satings
Betivity Date REdl;?mn \nltla[;]CDSt Poirt Y"):arr [;EHBB Per End ‘ear SeT:;Ied
[ () ewn) | metrie | TR | (BHG. el e .
e reiric On the UF Campus, there are still plenty of
uging  |[2002 |[+5  |[000 W05 (3744720 | 2681 (266628 | 19767 | BI0G6aTE hght fixtures that can be upgraded to T8
and other new versions. Even more exciting

CO02 Emissions (metric tons)

is the digitally controlled, next-generation

Projected Emissions {metric tons) technology Called TS . TS iS Smaller,

brighter, more efficient, and steadily

becoming affordable. The upgrade scenario
from T8 to TS5 can be planned ahead of time
with a trigger event located at a specific
product price level. This makes the upgrade
costs, and resulting operational and GHG

2001 2002 2003 2004 2005

I e s savings highly predictable.

Reporting Period



Reduction Technologies — Windows

In 1990, unwanted heat loss and gain through windows cost the United States almost $20 billion,
roughly one-fourth of all the energy used for space heating and cooling. Notwithstanding, windows
play an important role in the built environment as they bring light, warmth, and beauty into buildings
and give a feeling of life, openness and space to internal areas. Fortunately for us, the technology

surrounding glazing has improved dramatically in the last decade and many cost effective solutions
have come to the fore.

The primary options available to controlling window energy flow are:

Caulking and Weatherstripping - Caulks are airtight compounds, like silicone and latex, that fill cracks and holes. It is important to apply the
caulk during dry, but warm weather.

Replacing Window Frames - The type and quality of the window frame affect a window's air infiltration and heat loss characteristics, e.g.,
windows with compression seals permit about half the air leakage as sliding windows with sliding seals.

Change the Type of Glazing Material - Now several types of special glazing are available that can help control heat loss and condensation.

+  Low-emissivity (low-e) glass has a special surface coating to reduce heat transfer back through the window. These coatings reflect from

40% to 70% of the heat that is normally transmitted through clear glass.

Heat-absorbing glass contains special tints that allow it to absorb as much as 45% of the incoming solar energy, reducing heat gain.
Reflective glass has been coated with a reflective film and is useful in controlling solar heat gain during the summer. It also reduces the
passage of light all year long, and, like heat-absorbing glass, it reduces solar transmittance.

Excess solar hed i -t
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Window upgrades are part of the tasks that PPD performs when the budget allows for it. Recently,
Tropical Solar Film, a local glass tinting shop, was hired to re-cover the 280 windows on the east and
west side of the Engineering Sciences (Aerospace) building with LLUMAR® R-20 Silver. This unique

sun-film is able reject 79% of external UV and solar energy, while allowing 85% of the light to pass
through.

The Aerospace building is a long, narrow structure with a north-south axis and particularly vulnerable
to radiated heat, light and glare. The film upgrade for the whole building cost $11,200, and covered
4081 ft2 of window space. In CY 2001, the cooling cost of building 725 was $35,085.

No payback figures were available from the installer, but if the upgrade reduces the need for chilled
water (the cooling agent) by 15%, the payback time is just over 2 years. This also reduces operational
cost by $5 262/yr and saves the environment approximately 38 tCO2 annually. The life expectancy of
the film is 15+ years, providing this investment with a potential ROI of 7.1.
According to PPD and the professionals at Tropical Solar, many opportunities for
window upgrades exist on the Campus today.

=

T
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Non-glazing options, such as awnings, shutters and screens can be applied on the inside and outside
of windows to reduce heat loss in the winter and heat gain in the summer. In many cases, these

window treatments are more cost-effective than window replacements and should be considered
first.
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Reduction Technologies — Plug Load

Electricity use by office equipment is growing faster than any other end-use in commercial buildings.
Both the number and variety of electrical products have increased and equipment such as computers,
printers, copiers, phones, chargers etc., draw energy not only when they are in use, but also when the
power is ostensibly off. This is also true in the learning environment where these tools represent an
increasing share of the electricity and resulting GHG pie.

Category Devices At the same time, substantial progress in recent years
Copier _ has improved the energy efficiency of equipment.
_ g;’g;ﬁfg;fhemls This study found numerous examples and reports
Office Equipment Answering machine indicating that if you install the latest energy-efficient
Sgﬁ‘fﬁfﬁ}ﬁfchargﬂ electrical products in older buildings, you can reduce
e Mictowave oven your energy costs by 40 percent.
Coffee machines
Smoke detector Efficient equipment also produces less heat, which
pecurity & Decurty alarm system leads to lower cooling costs. One study performed by
Baby monitor (student housing) UBS, Switzerland, lead to the phase out of all CRT-
Audio system screens by LCD-screens in their offices nationwide
Audio & Video ?{’;ﬁ“\}%"g: g\";gf‘l&?ﬁnﬁ& sards when it was calculated that savings achieved by

reducing the impact on the summer thermal load
could well pay for the new equipment. Targeting equipment to lower energy use is also an attractive
option because of the multiple benefits involved. First, the user gets new equipment and probably
better features. Second, the procurement of desired equipment can be managed by adjusting existing
purchasing policies. Third, operational and GHG savings can be forecasted very accurately for most
electrical items since their precise consumption rates are typically included in product information.

From the administration’s point of view, this provides a great deal of control. For example, a new
refrigerator with automatic defrost and a top-mounted freezer typically uses less than 650 kWh’s per
year, whereas the same model sold in 1973 used nearly 2000 kWh per year. If UF decided to change
out all of its fridges, it could calculate to the dollar how much to subsidize each department to
encourage the event to take place, while still realizing operational savings.

Thus, UF could drive these events to take place according to explicit formulas that satisfy given
financial objectives, such as duration of payback, ROI, IRR, subsidy amount and so on. It could search
out specific items for change-out and leave others for later. For instance, in 2001, PPD conducted a test
using Vending Misers, which uses electronics to que vending machines into service only when users
are present, as opposed to being on-full alert 24 hours a day. According to the sample test, applying the
Vending Miser to all vending machines on campus would result in $62,784 in electric saving and 718
tCO2 reductions per year. PPD has installed 26 Misers and is awaiting funding to “Miser” 400 more
machines. The Vending Miser retails for about $225 and comes with a 10-year warranty.

If the University secures a 3-year loan at 5% to purchase Vending Misers, the monthly principal and
interest payments per Miser would be approximately $6.74. However, the monthly savings in kWh’s
for each Miser equipped machine is about $12.28, resulting in a net gain for the University of
$5.53/month for the first 36 months, and a total of $1,230 over the 10-year life of the Miser.

11



Reduction Technologies — Cooling

At UF, chiller plants consume 24.8% of the yearly kWh budget to generate chilled water. An
additional 14% cooling capacity is extracted from waste steam supplied by the cogen plant, while
thousands of individual window AC units serve on campus dorms and smaller buildings.

Because cooling is the largest single draw of energy, likely comprising in excess of 30% of the energy
budget at UF, cooling systems are among the first to consider when reviewing energy upgrades.

weighted Plant age industry kW/ton for that age Actual UF kW/ton relative to industry average
McCarty Plant 1996 0.61 0.79 +22.8%
SE Plant 1997 0.60 0.81 +26.0%
SW Plant 1990 0.65 0.7 +6.9%
West Plant 1994 0.62 0.95 +34.5%
1984 0.70 0.79 +11.0%
Weil Hall Plant 1983 0.71 0.72 +1.2%
Holland Law Plant 1984 0.70 0.78 +9.7%
weighted Fleet Age industry kW/ton for 2000 UF weighted kW/ton UF relative to 2000 average
1990 0.55 0.77 +28.91%

Chillers are rated by the volume of water they can chill in an hour, -
expressed in kilotons. A 1,200-ton unit is common on the UF campus
which altogether has 42 units working in tandem to maintain a total 1 A
of 38,328 ton cooling potential. The 42 units pool into 10 loops, each £ Wb <

ff i 1 1 b _{j <& ez _\_\___“ ™ !‘ ,I
CITIcienCy ICvels as seen above. =y il W e
=g mET== e =~y 2

It would be interesting to look at the flow of coolant energy in more detail at the next opportunity. The
energy consumption rates of chillers plants are extensively logged and are available down to the hour.
This data provides highly accurate forecasting capabilities when considering investments in upgrades.

Figure 3: Operating cost comparison.

If UF were to have a completely modern chiller fleet a decade from
now, operating at 30% higher efficiency than today, it would take about
another 10 years to achieve the payback point. This is among the
S NenNRyel longest returns of any of the energy investments identified. However,
most cooling equipment is industrial strength and good for 20 years and
more, suggesting a simplified payback of at least 2.0.

Cost of Crilad

Complementary reduction avenues include integrating GeoExchange to
cool UF buildings, using landscaping to change building energy profiles and automating air handlers to
make more efficient use of chilled water and heat energy.

Chiller Efficiency Progress (kW/ton) “Chillers in 1978 used 50% more energy than in 1998”

1978 1980 1990 1991 1993 1995 1997 1998
Average 0.80 0.72 0.65 0.64 0.63 0.61 0.60 0.59
Best 0.72 0.68 0.62 0.60 0.55 0.52 0.49 0.48<
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Reduction Technologies — Controls

The ultimate objective of any serious energy conservation program is a central, computer automated,
electronic control system. An integrated system of remote sensors and management devices permits the
optimal use of energy across all areas while providing the best environment for building occupants.
Tremendous advances in computer technology
over the last decade have lead to increased
sophistication and falling costs of Direct
Digital Control (DDC) systems for buildings.
DDC systems are now affordable for almost
any size building and allow much finer control
and energy savings than traditional controls. In
: addition, DDC can also integrate fire and
other elecirical Coniroks HYACsystems  secyrity and connect systems to existing
Computer computer networks. The following are some of
the common applications for DDC.

Optimized start/stop of air handling units - This is simply a more sophisticated use of the on/off
controls of the air-handling units in a building. Instead of a complete cut off, the thermostat is setback
at night and on weekends in a fashion that mimics the temperature curve outside. This allows for a
computer program to match the thermal momentum of the building mass and the volume of air already
conditioned inside to maintain temperatures within the comfort zone for the balance of the day.

Demand limiting - The demand limiting philosophy is to turn off equipment as electrical use
approaches demand peaks. The software simply follows a prioritized list of items to be turned off until
the energy use curve levels and the peak load passes. Clever operators will make use of the building
mass to provide thermal momentum during these periods, extracting or rejecting heat energy, to always
maintain a comfortable environment.

Peak load shifting - Some systems accomplish demand
limiting by shifting the building load to off peak hours and
storing energy until it is needed later. There are several thermal
masses that can be manipulated this way: the building mass,
the volume of fluid in the chilled water loop, the volume of
cooled air within the building and the humidity of the cooled
air in the building. An hour or two before the peak load is
expected, based on a dynamic profile generated during
previous days, the building and its systems float below the set e
point, storing energy that is released for the next few hours Nigkicooliann
until the peak is passed.

Load leveling - Whereas the use of energy at a facility cannot be avoided, the timing is often flexible.
Instead of operating the laundry in the middle of the afternoon, when the HVAC (heating, ventilation,
and air conditioning) is approaching its peak, the laundry can be done earlier in the day. DDC type
controls coupled with a thorough understanding of daily routines can greatly enhance a facilities’
ability to smooth out the demand curve and lower utility fees.

13



Two stage controls - There are many applications for two-level controls. One example is a room
served by two air handlers, both directly controlled by a single thermostat, which often leads to intense
cycling and excessive energy use. Instead, the more sophisticated two-level controller activates one
unit, then both, as the load demands. Another example is controlling the motor speed of an air handler.
Dual stage controls are a good compromise for system retrofits where the Variable Frequency Drive
(VFD) is too costly.

Automated processes save time, money and energy consumption - A DDC system provides many
benefits, including lower energy costs, finer temperature control, flexibility, lower maintenance costs
and real-time graphical displays of the facility systems. DDC also provides better use by allowing
facility managers and others to easily change standard set points and schedules, including daylight
savings time, three day holidays etc., through user friendly Windows based interfaces. For instance, for
a special basketball game weekend, when the building would otherwise be closed, the coach enters the
date, time and the areas (e.g., the gym and locker rooms) requiring the HVAC system to be
operational. The rest of the building remains shut down, the DDC system only supplies energy where
needed, which lowers energy cost and extends the lifetime of the equipment.

Designed with minimal moving parts, a DDC system also experiences far fewer mechanical failures
and requires less maintenance than a traditional system. Service calls are reduced as well, as the
automatic climate adjustments eliminate frequent calls to adjust uncomfortable air settings. Finally, a
DDC system generates reports that measure and record energy consumption, service call activity and
the maintenance schedule.

Examples of savings from controls and other upgrades - The study found many detailed examples
of cost savings achieved through upgrades and automation in public, commercial and military
facilities. Operational savings after upgrades typically ranged from 30% to 70%. One such example
takes place on Kodiak Island, Alaska, where the Coast Guard is saving more than $220,000 a year in
energy costs by completing $1.1 million of work in a pilot program for energy-saving projects. The
improvements there have a pay back period of just over five years, and since the lifetime expectancy of
the upgrades spans almost two decades, the project ROI is an impressive 4.0.

Another example takes place in San Diego,
California, where the City Council upgraded a
1981 office building and lowered operational

Green Strategies used at Ridgehaven
San Diego, California

Minimize solar heat gain

costs by 60% compared to an identical building
right next door to it. The indoor air quality was
improved by quadrupling the flow of outdoor
air to 20 cubic feet per minute (cfm), compared
to 5 cfm when the building was originally built.
Energy-efficiency measures began by replacing
the entire HVAC with high-efficiency systems,
equipped  with computerized energy
management controls. High-efficiency window
films reduced heat gain, fluorescent lamps and
fixtures were installed with daylight sensors
and occupancy sensors.

Use of light-colored exterior walls and roofs
Minimize non-solar cooling loads
Reduce internal heat gains by improving lighting and appliance
efficiency
Cooling systems
Use accurate simulation tools to design cooling system
Use efficient cooling towers
Use water-cooled mechanical cooling equipment
Commission the HVAC system
Light sources
Use high-efficacy T8 fluorescent lamps
Controls and zoning
Use direct digital control (DDC) systems
Use variable-volume air distribution systems
Computers and office equipment
Use an occupancy sensor to turn off computer peripherals when
the office is unoccupied
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David A. Gottfried, who worked on the project, points out that "since the project qualified for San
Diego Gas & Electric financing, all high performance, state-of-the-shelf measures were financed by the
utility,” the return on the energy-saving measures was infinite. Gottfried notes that even if the City
itself had paid for these measures, the internal rate of return would have been over 30 percent. The
energy consumption of the Ridgehaven building dropped to 7 ~ 8 kWh/ft2 from 21 ~ 22 kWh/ft2
before the upgrades. In CY 2001, energy consumption at the University of Florida averaged 20.7
kWHh/ft2.

Controls on the UF Campus

A limited amount of direct controls exist in a handful of buildings on the Campus through the use of
the Johnson Controls’ Metasys® System. This has lead to the advantages mentioned above, including
cost savings and a positive experience on the part of the occupants as well as the building engineers.
Many types of Energy Management Systems (EMS) exist in the marketplace, with simple EMS
systems starting at $4,000 installed, and more sophisticated wireless units available for around $10,000

per copy.

With nearly 40% the Campus kilowatt consumption incurred in just 50 buildings, it is easy to see that
equipping those buildings with EMS systems would greatly enhance the Universities’ ability to
develop a feel for and better control its energy functions. Just like a patient in an operating room
benefits from immediate attention to an increased heart rate or belabored breathing, so will the building
infrastructure and university budget profit from access to modern day diagnostics.

Operating the Campus is like an orchestra playing music; each energy consumption point participates
in creating the score. From an energy perspective, PPD, Operations Engineering, HVAC, Building
Services, Facilities, Athletics and Forestry all play a role in how energy flows and is consumed within
the campus system. It makes sense, therefore, that these actors receive the mandate and supportive
funding necessary to lead the transformation of UF’s energy management structure into the 21
century.

Today, a man tours the Campus with a notebook and pencil to collect building utility data. The result is
12 sets of numbers to express usage during academic and earth cycles for around 8760 hours of
building operation. Tomorrow, a student will be able to pull up the exact energy consumed by his own
building during the first 11 minutes of class. From an energy management perspective, it is the
difference between navigating the ocean with a sextant or a global positioning unit (GPS).

For a reasonable amount of money, relying on existing
human resources and off-the-shelf technology, it is quite
feasible for the University to attain real-time control over
the energy flows in 80% of the Campus load in under 3
years. Of the many options available, this is the most
strategic first step towards improving our understanding of
and ability to reduce costs and greenhouse gases in the
University system.

Set Back Temperature 65 62 60 57 55 50 45
Per Cent Savings 4.0% 8.0% 10.7% 14.6% 17.3% 23.9% 30.7%
Percent winter savings from Set Back for a typical building in Philadelphia assumes 70 degrees F as the original base temperature.

Carbon Neutral Assessment Project 15 Office of Sustainability
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Reduction Options - Green Buildings

Buildings use the majority of energy and represent the greatest source of greenhouse gas (GHQ)
emissions on the UF Campus. Buildings also offer the largest opportunity to reduce GHG’s and lower
monthly operating expenditures.

New approaches in design and construction routinely result in buildings that reduce operating costs by
50% or more without requiring a significant increase in design or material costs. One such example is
Rinker Hall, which uses a fraction of the energy and water consumed by conventional buildings,
lowering operating costs by around 60%.

Given the availability of alternative construction options, adopting high standards for new buildings
and evaluating the existing building stock for “green upgrades” represents an effective strategy for
lowering GHG’s while capturing operational savings in the UF campus setting.

UF is planning to grow by 16% over the next UF kWh Related GHG Emission
10 years... What are the potential annual s .

. . . P for A 169 h
dollar and GHG savings if all new buildings rojections for Anticipated 16% Growt
are Green and operate at 50%? 320,000

300,000
Annual $1,743,000 S
+ 21,000 tCO2 g 280,000
©
Over 50 years $87,150,000 R
+ 1,050,000 tCO2 < ’
- . . 240,000
(Based on emissions from electric consumption only,
using constant 2001 emission rates and pricing. Green 1999 2000 2001 2002 2006 2012
buildings also reduce the use of steam, water, coolant

gases, light fixtures, maintenance etc., and total savings BAU Green
would likely be higher)

From experience we know that choosing a green building design increases overall project outlay, in the
case of Rinker Hall, by about ~ 10%. Compared to operational savings, however, this cost increase is
offset in the first few decades by savings in electrical, steam, cooling and water.

What is LEED?

The LEED (Leadership in Energy and Environmental Design) Green Building Rating System is a
voluntary, consensus-based national standard for developing high-performance, sustainable
buildings. Developed by members representing all segments of the building industry, LEED
standards are currently available for new construction, upgrading existing buildings and commercial
interior space.

LEED emphasizes strategies that promote integrated, whole building design practices that include
sustainable site development, water savings, energy efficiency, materials selection and indoor
environmental quality, among others. The overall benefit of LEED or “Green Buildings” to the
occupant is a healthier, more pleasant work environment, resulting in elevated productivity and
lowered operational costs. Any savings in GHG’s are incidental, but highly measurable.
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Reduction Options - Renewable Energy

If all the energy the University of Florida consumes came from renewable sources, the Campus GHG
profile would shrink by 80%. Renewable energy therefore emerges as the ideal long-term solution for
the campus’ energy needs.

Renewable energy is also enjoying unprecedented

JEREde Growth popularity. Both Wind and Photovoltaic have

Actual | Projected experienced 6 years of back-to-back 20% growth.
L B oo Renewables are the fastest growing segments in the
3 2500 energy industry for the last decade, primarily
% oo becagse they make electricity possible in remote
e locations.
g
G g e While these novel power sources steadily gained

Source: BTM Consult - 1999

market share, advances in computer design
technologies, improvements in the manufacturing process of silicone, high-strength low-weight
materials, gear technologies and software control systems have helped make renewables better and
more reliable.

The sun and the earth

At the rate the Renewable Energy (RE) industry is growing, it is just a matter of time until these clean
technologies become cost competitive enough for the University of Florida to consider implementing
in large scale. The study found that Photovoltaics (PV) could be financially attractive as early as a
decade from now. This is important, because roof space built today needs to be compatible with the
energy panels of tomorrow. To ensure this, PV friendly design parameters need to be introduced as a
component of current building planning process.

The ideal renewable technologies for Florida are
Photovoltaic, Solar Thermal, and Geothermal. Over
time, these technologies can be integrated into the UF
campus setting and supply “home grown” power by M EE
perhaps as much as 20%. To better understand the 1 ' ' - awpy
potential of renewables at UF, consider the following;

each year, the energy in the sunlight striking the State of 1985 1995 2005 2015 2025
Florida is about 10 times the amount of all energy The breaktrough price level for PV is
consumed by the United States each year. The question S 2snat

is not whether there is enough sun; the question is what
it takes for us to adapt our infrastructure to take advantage of this energy opportunity.

Influence of Market Growth on PV Cost

10

Price in $/Watt
N

Solar Thermal (ST) technology can convert 30 ~ 50 percent of the received sunlight and use it to heat
up air and water. Many off-the-shelf ST products exists that can be used to heat air and water cheaply
and reduce the need of, for example, Natural Gas (LNG), which represents 1.72% of UF’s GHG
budget, and $1.7 million/yr in capital outlay. NG is used to heat water in dorms, fraternities/sororities,
cafeterias, office buildings, laundry facilities etc., and can be replaced or reduced with ST applications
with minimal investment risk. Solar Thermal has traditionally had the fastest payback of any
commercially available RE technology, typically breaking even in 5 ~ 7 years. ST potential on the UF
campus therefore merits a thorough review.
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Photovoltaic (PV) systems can convert 6 to 15 percent of the solar
energy received directly into electricity. With PV, the sun can be
used to reduce the need for greenhouse gas causing fuels whenever
it shines. One idea is use the solar panels as covers on UF parking
lots to provide shade to the vehicles while generating electricity.
To offset the cost, these energy petals could be sponsored by
donors or by selling the green attributes to students and UF alumni.

i SO s
The world's largest parking lot solar system is

Bhotoo Kvoeera Solo

located in Sacramento, California.

Building # Building Name Footprint (ft2)
0209 PARKING GARAGE 2 (SHANDS WEST) 92,620
0364 PARKING GARAGE 3 (SHANDS WEST) 78,941
0173 HEALTH CTR GARAGE 9 44,103
0358 PARKING GARAGE 4 (MUSEUM RD) 59,706
1166 CULTURAL COMPLEX GARAGE 46,136
0148 PARKING GARAGE 7 (SOC) 50,806
0207 PARKING GARAGE 1 (SHANDS EAST) 24,875
0442 PARKING GARAGE 8 (NORMAN HALL) 46,106

ft2 to m2 conversion

Total square footage

0.0929 443,293

PV system cost per W ($) watts per module m2 per module
12 150 1.32

Cost to create PV roofs for above parking facilities (using 2001 prices) Coverage %
$22,462,865 40.00%

Cost to create PV roofs minus revenue from kWh Project lifetime in years
$17,051,561 40

Price per tCO?2 lifetime $/tCO2 FPC Lifetime output in MWh
242 98,387

Price per tCO?2 lifetime $/tCO2 GRU Yearly output in MWh
183 3,075

Lifetime revenue from MWh ($) Revenue per kWh
$5,411,304 $0.055

Sample PV panel
Shell SP150-P

m2

41,182

Cost per m2
$1,363.64

W per m2

113.64

total power in W
1,871,905

Lifetime tCO2 FPC
70,347

Lifetime tCO2 GRU
93,173

Life time net cost in $/kWh
$0.1733

Geo Thermal (GT) or ground-source heat pumps, capitalize on the fact that temperatures 4 to 6 feet
underground remain almost constant throughout the year. In Florida’s case, ground temperatures are
around 72°F year round. Because GT systems interact with this essentially ‘free’ thermal mass, GT
systems are typically 10 ~ 30% more efficient than conventional heat pumps. In Geothermal systems, a

transfer fluid, usually water, flows through a loop of underground
plastic piping to carry energy back and forth to the building. In the
summer, heat is extracted from the building by the fluid and is shed
to the ground. In the winter, the fluid picks up heat stored in the
relatively warm ground after which the heat pump boosts the
temperature and delivers it to the building.

housé via
ductvork

Note the absence of visible
outdoor equipment

Ground loop releases

' heatto cool earth

- |— D
Ground loop
releases heat

Hot refrigerant flows 12600l earth
through cols, releasing

2 eatto cooler water

in ground loop

In cold zone Pressure reducer

refrigerant
absorbs heat

Relatively cool
ground

from circulatin
interior air

Compressor
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Reduction Options - Sequestration

Carbon sequestration could offer a local solution to UF’s emissions profile that has the benefit of low
price, beauty and bio-diversity while providing a form of economic stimulus to the community.
Capturing CO2 using bio-systems is also the cheapest way to cause emission reductions to happen,
cheaper then installing PV, for example. Since the University of Florida owns and is surrounded by
land, the study suggests inventorying existing carbon sinks and to explore the modalities of
sequestration programs here and abroad. Sequestration could be a keystone in UF’s carbon neutrality
program.

In addition to the practical advantages UF has in engaging and managing sequestration programs, it is
important to understand that sequestration is globally considered to be integral to the long-term
solution to climate change. Sequestration is currently a hot topic in industry and government research
activity. Sequestration programs designed to help UF become carbon neutral may well be leveraged to
attract additional research and outside funding opportunities.

Of all available measures, only sequestration can erase
our global warming “debt”, as carbon is actually

removed from the atmosphere. This means that even
=mizsishlste after society shifts to a low carbon infrastructure (stop
tGhr the fever from running up), large-scale sequestration
t programs are necessary to harvest CO2 back out of
atmosphere (lower the fever). To illustrate the scale of
this challenge, 7% of the land surface on planet earth
would need to be rededicated from scratch with large,
Douglas-type fir trees to remove man’s excess carbon.

The atmosphere now holds 30% more
carbon than a century ago.

Human

Earth 4.7
absorption rate
in killien

tGhr time de-carbonization patiiiay

©

To balance out one year of UF GHG emissions, you would need to raise a 1,700-acre Longleaf pine
forest. In relation, if 5% of Alachua County were reforested with Longleaf pine, UF could be
neutralized for 20 years. Though a single project may be easier to manage, there are advantages to
creating a portfolio of domestic and international activities encompassing a variety of sequestration
pathways such as soil, forestry, wetlands, tidal marshes and energy crops. The study proposes inviting
relevant UF departments to suggest their ideal dual-purpose sequestration programs where the primary
beneficiaries are the advancement of research funding and UF’s GHG bottom line.

Latent atmospheric Carbon is
about 188 billion ton

Sequestration potential using Longleaf pine, a common species in North Florida, rotation age about 30 years.

Annual tCO2 to be offset tCO2 to tC value in tC sequestration potential of Pinus palustris in tC/ha
519,623 0.2727273 141,715 200
Annual hectares needed acre to hectare annual acres needed assumed cost per tCO2 rotation age (yr)
708.58 2.47105 1,750 $5 30
cost to UF and total value to farmer annual value value per acre value per acre/year
$2,598,115 $86,604 $1,484 $49.46
Sequestration potential using UF campus soils, designed and sponsored as a coastal defense project
area UF Main Campus square foot per acre average annual soil addition in inch and foot
1,966acres 43,560 0.25 0.02
ft3 of new soil/yr cubic yard/yr weight in tonne % carbon (by weight) in new soil
1,784,152 66,085 44,964 2
Annual carbon weight (t) tC equivalent in tCO2 program life in years
899 3,297 100
tCO2 over program life height gain (ft) UF Campus over program life cost
329,736 2.08 7?7
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Reduction Options - Emission Trading

Emission trading is an instrument that enables UF to purchase reductions achieved elsewhere and
apply those reductions to its own bottom line. The trading of greenhouse gases is a fast growing,
internationally available practice which in turn subsidizes and encourages the use renewable energy,
energy efficiency, sequestration and other emission reduction activities.

Depending on the eventual approach the University chooses to address its GHG profile, emission
trading could be used to offset part or all of its emissions. In turn, emissions trading could be used to
generate revenue for UF by selling off reductions achieved by internal efficiency actions and campus
RE activities. In the latter scenario, UF achieved reductions are removed from the UF GHG profile and
transferred elsewhere, thereby increasing the GHG bottom line. However, the reductions have still
taken place, UF is still benefiting from a lowered monthly energy outlay while the revenue from sales
can be used to co-fund additional reduction activities.

Emission trading usually involves a buyer, a seller, a verification/certification agent, and a broker. The
University, through the Office of Sustainability, has evaluated two rfp’s for emissions reductions, one
offered by the utility BC Hydro in Vancouver, Canada, and another by the City of Seattle in
Washington state. Both rfp’s have the same general constraints in terms of size and delivery schedule,
with BC Hydro offering $5/tCO2 and Seattle offering $4/tCO2. The Seattle rfp requires action by
January 31, 2003 the BC Hydro rfp is ongoing.

Emission trading has also been introduced recently in the U.S. congress as a way of lowering
emissions on a national level, suggesting that perhaps UF may be faced with trading issues regardless
of its own action timetable. Emission trading is also a key component of the Kyoto Protocol (KP), an
international treaty aimed at lowering the emissions of greenhouse gases. The treaty goes into effect in
2008 and requires GHG reductions of over 20% by most industrialized nations. To meet these targets,
trading is already taking place, which in turn is driving up the price of reductions. Depending on
whether UF becomes a seller or buyer of reductions, the market price will influence the fiscal construct
of any GHG reduction planning.

This table portrays the potential value of UF GHG reductions over the next two decades.

tCO2/yr Total tCO2 generated by 2020 $/tCO2 $/tCO2 $/tCO2 $/tCO2
9,353,206 5 10 15 20
Reduction period Offset Value

2002-2005 0.25 $ 11,691,508

2005-2010 0.25 $ 23,383,015

2010-2015 0.25 $ 35,074,523

2015-2020 0.25 $ 46,766,031
|$ 116,915,076‘
| $ 521,233,636 ‘

Based on emissions from electric, steam, water, coolant gas and fuel consumption, assuming continued 2001 emission rates and pricing.
Value attributed to emissions reductions are based on available models, reflecting the demand over time as participating Kyoto countries try
to reduce their GHG emissions. The Kyoto commitment periods run in 5-year blocks, the first of which is from 2008 to 2012. The underlying
objective of KP is to reduce global GHG emissions by 60% or more, in 4 to 5 separate commitment stages.
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Reduction Estimates
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Reduction Estimates - Overview

From a practical point of view, UF could achieve carbon neutrality simply by investing in a large-scale
afforestation or reforestation project somewhere in the Americas and forego any reduction activities in-
house. On the other hand, in-house reductions, which require a focused effort to accomplish and carry
with them the challenge of up-front capitalization, insure long term cost savings and permanent
reductions in the emissions budget.

The gross cost to achieve carbon neutrality is consequently heavily influenced by the proportion of
reductions achieved inside the UF Campus system. In the short term, Campus reductions are costly, but
in the long term they pay for themselves and can be used to raise funds and co-finance further
reduction projects. The trick may lie in designing an infrastructure investment menu in which only
alternatives that pay back at least twice their worth appear. The control functions of time and relative
risk could then be used to shape the decision matrix to select low cost & quick return projects first and
higher cost & slower return projects later.

For the purposes of this reduction estimate, the following basic reference was utilized. Between 2000
and 2020, UF is expected to pay a minimum of $521 million for electricity, primarily to operate
campus buildings. On this 20-year scale, each percentage point is worth a bit over $5 million. If UF
can manage to reduce one percent of electrical consumption for two million dollars, than she is three
million dollars ahead. Since investments make the improvements possible, the sooner the execution,
the quicker and longer benefits can be reaped.

Using the bi-decadal scale, if an $80 million dollar investment in UF infrastructure can achieve $130
million in electrical savings, it should be considered because the money dynamics are there and
valuable environmental savings such as greenhouse gases are essentially incurred for free. This
research found that an appropriately executed investment of $40 to $80 million dollars in lighting,
heating, cooling, glazing, diagnostics, sensors, control software, plug-load change-out and real time
management capabilities can achieve a substantial reduction in energy consumption, varying between
30% to 50%, in the main UF Campus setting.

Energy Intlest_ment & /| Amortization of
Amortization Profile Investment

Electrical costs

“We wanted to know if all the in million $
improvements took place this perdecade 100
decade, what would next
decade look like?” 10990

Investment in B
energy upgrades
260 (this decade) 260 (next decade) = 520 BAU

+80 investment -130 savings -50 net savings
340 130 = 470 new net
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Reduction Estimates

Because of UF’s considerable size and the highly distributed nature of greenhouse emission events,
any attempt to transform the UF Campus to a sustainable, low-carbon operation can only be achieved
by involving the many departments and personnel that participate in its daily operations.

One of the first things to consider is the shape and

nature of the framework in which these various i nggnmental mpast
participants can contribute to the transformation

process. The framework would be the body in  Gwomicad

which objectives are articulated, resources are
allocated and results are recorded. The framework
would likely remain active through the
transformation process, though participants may
drop in and out as their objectives are achieved.
Though the functionality would remain the same,
the framework may scale somewhat depending on
whether UF pursues a moderate or an aggressive
approach to carbon neutrality. The framework
would need to be anchored by a core of people with long term attachment to UF, good access to
decision makers and excellent cross campus coordination skills.

Zero Emissions
(Systems Modification
and Industrial
Clustering)

Maxirmum Efficiency of Goods Production

Cleaner Produciton

Zero Inventor

etin Trme Systems) Maxi mum Efficiency of Treatment

Increasing Efficiency
Reducing Emissions

Zero Defects End of Pipe
(Total Quality Control), Paollution Control

Business As Usual (BAU) for the purpose of this report refers to facilities management on the scale
and tempo that currently has UF ranked as one of the better-maintained campuses in the nation. The
range of services provided by UF staff span from plumbing to landscaping, automotive repair to
architectural work and dozens of activities in between. It is not uncommon for PPD to fulfill over
4,000 work requests a month to service the ten million square feet and two thousand acres that 50,000
students, faculty and staff make use of on a daily basis. Managing this facility is an awesome thing; it
is the mojo that keeps the campus humming. Nonetheless, at the rate of expansion anticipated, BAU
would likely result in increased energy consumption and resulting greenhouse gas emissions in the
order of 8% ~ 12% by 2020.

Moderate Approach (MA) this report reflects an investment strategy that lowers the annual financial
commitment in return for achieving carbon neutrality later rather than sooner. The basic characteristic
of this approach is to table low-cost, quick return projects first, wait for those projects to reach their
payback point, and then use any further savings to finance higher cost & slower return projects. In the
moderate approach, carbon neutrality is reached around 2030. The advantage of MA is a larger return
on investment, simply because the energy saving measures have more time to accrue costs savings
before the carbon neutrality point is reached. In MA, offsets are higher priced, as they are acquired
later when global competition for them is expected to have driven prices up.

Carbon Neutral

Savings 2005 - 2025 = 130
Savings 2025 -2035 = 130
Investments 2005 -2025 = -80
$1 30 $1 30 Investments 2025 -2035 = -40
Offsets 2025 - 2035 = -62
Net 2005 -2035 = 78

ROI energy investment  2.166 (30yrs)
2005 2025 2030 2035 ROI carbon neutral 1.428 (30yrs)

28



Aggressive Approach (AA) this study has the same investment characteristics as the moderate
approach, except that the entire upgrade schedule is executed in one decade (front-loaded). Cost
savings from energy upgrade measures made at the onset of the schedule have therefore less time to
accrue, which leads to a lower overall return by the time carbon neutrality is reached. On the other
hand, offsets are cheaper because they are purchased before competition really intensifies,
compensating somewhat for the lower energy ROI. In the aggressive approach, carbon neutrality is
reached by 2020. It should be noted that in both MA and AA the investments are of the same dollar
amount and target the same upgrades and infrastructural improvements. In addition, after the primary
objectives have been reached, both models assume continued elevated funding for energy related
projects above and beyond BAU to keep the University at the highest efficiency levels possible.

Carbon Neutral

Savings 2005 -2015 = 65
Savings 2015-2025 = 130
Investments 2005 - 2015 = -80
Investments 2015-2025 = -40
Offsets 2015-2025 = - 37
Net 2005 -2025 = 38

ROI energy investment  1.625 (20yrs)
2005 2015 2020 2025 ROI carbon neutral 1.242 (20yrs)

Detailed Estimate, Aggressive Reductions

For the purpose of the “aggressive model”, the study mimicked the complete retrofit of cooling and lighting components in the UF
Campus, a subsidy to phase out pre-1994 electrical and other non Energy Star® equipment, the installation of sensors and bi-directional
controls on buildings making up 80% of the electrical load, a healthy budget to change the thermal characteristic of buildings through
glazing improvements, insulation and so on, rounded out by a modest green energy component.

Value tCO2 Value kWh
MWh/yr  MWh 2002-2020 $/MWh 2010-2020 2010-2020
369,951 6,659,118 72 $ 26,468,600 $ 266,364,720
Relative | Value of tCO2 Value of Combined
Function Remaining Load |[Reduction @ $10/t kWh Savings ($) Value ($) Cost
$ 4,500,000
AC 15% 14.8%
$ 13,563,200
Lighting 8% 8.0%
$ 7,617,119
Equipment 10% 10.0%
$ 11,098,530
Remaining
Load 14% 14.0%
$ 39,000,000
Bio Fuel 5% 5.0% 5% 1,323,430 -2,774,633 -1,451,203/$ 2,774,633
1.0% $ 4,000,000
Total 100% 52.8% $ 13975421 $ 124,547,704 $ 138,523,124 $ 82,553,481

In the above example, energy saving measures implemented in the 2000-2010 timeframe results in over $40M in savings the decade
after implementation. The value of the GHG reductions, expressed here as tCO2, can be counted as currency under evolving GHG
asset recognition standards. The reductions can also be sold to a third party, in which case the value transfers off the UF balance sheet.

29



What to do with emissions you can’t aveid? — Whether she chooses a moderate or intensive
reduction approach, UF will be faced with continued emissions in the near to intermediate term and
needs to prepare to offset those emissions. One of the more attractive strategies is to create a long-term
base load reduction project, accompanied by a subset of smaller, short-term projects to provide for
flexibility. The baseload project sees mainly to lower the cost of achieving carbon neutrality and
indirectly support smaller, higher cost projects.

Emissions Offset Portfolio

Carbon Neutral Investment Menu, assemble your own portfolio

The baseload project is purposely
arranged to grow beyond UF’s own
reduction needs so it can be
leveraged later this century to fund
projects after UF itself has reached
carbon neutrality. At this time,
carbon will have become but
another financial instrument in
UF’s daily business practices.

All items in the menu help reduce greenhouse gases, but the chart only rates options according to savings from a cost perspective.
Therefore, enhancing UF’s role in Public transport, though very valuable from a GHG perspective, is listed as having zero payback. Cost
is expressed as a combination of the gross amount and the time it takes for the payback point to be reached. For example, Green
buildings are listed as high cost because it takes a decade or so for the investment to start paying off even though the green upgrade is
typically only 10% or 20% of total building cost. Similarly, Green fleet is listed as medium cost, because though hybrid vehicles cost a
few thousand dollars more then the BAU alternative, the vehicles easily recoup the difference in fuel savings in under 5 years. Risk
mostly expresses the challenges of execution. Lights, for example, are listed as low risk because they are low tech and usage is
constant. Controls, Chillers and Forestry are thought of as medium risk because they require planning, engineering and dedicated
maintenance programs to be successful.

ltem Investment Profile Point of return Item life cycle (yrs) | Item Price |
Lights Low cost / low risk / short payback 2~3yrs 10 $10,000
Solar film Low cost / low risk / short payback 2~3yrs 20 $10,000
Sensors Low cost / low risk / short payback 1~2yrs 20 $5,000
Controls Low cost / medium risk / short payback 1~2yrs 20 $10,000
Plug load Low cost / medium risk / medium payback 3~5yrs 5~30 $200
AC units Medium cost / low risk / medium payback 3~5yrs 20~ 30 $500
Air handlers Medium cost / low risk / medium payback 3~5yrs 20~ 30 $5,000
Chillers High cost / medium risk / long payback 7~10yrs 20 ~ 30 $500,000
Green buildings High cost / low risk / long payback 10 ~ 30 yrs 50 ~ 100 $750,000
Bio-diesel Low cost / low risk / zero payback N/A N/A $9,000/yr
Green fleet Medium cost / low risk / medium payback 3~5yrs 8~15 $2,000
Public transport Medium cost / medium risk / zero payback N/A N/A $1,500,000/yr
Project light bulb Medium cost / low risk / medium payback 3~5yrs 5~7 $90,000/yr
Local forestry Medium cost / medium risk / zero payback N/A 25~ 35 $5,000,000
Overseas forestry | High cost / medium risk / long payback N/A 45 ~ 99 $10,000,000
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Method of Analysis

A variety of resources were used to derive emission and reduction values in the course of this project.
All values were compared against the 1996 IPCC Guidelines for National Greenhouse Gas Inventories
and checked for accuracy and relevance. The general boundary of the initial inventory was established
during a meeting with the Sustainability Task Force, representatives of Administrative Affairs and the
investigators. The confluence of data availability and ease of project execution directed focus of the
initial inventory to the main Campus using available data only. Later, a regional transportation and
public transport emissions impact component was added as an observational, non-itemized article to
the inventory.

Facilities Planning and Construction provided spatial and occupancy data for the 17million square feet
of Campus building space, Physical Plant Division provided monthly meter readings and pricing for 6
product values reflecting the last six years consumption for all tracked buildings. This was blended in a
relational database with the emissions rate, enabling the user to view consumption, cost, energy and
greenhouse impact at any point in the organizational hierarchy and select to view these impacts
laterally for a particular building, or department or college wide. The application was fitted to provide
the user the ability to create a baseline for a particular impact group and model financial and
environmental benefits using a menu driven investment table. Some of these features were used to
establish reductions scenarios discussed in the report. Members of the Physical Plant, Heat Plant 2,
were instrumental in creating the detailed HVAC data set, while Motor Pool provided the vehicle
consumption records on a granular level. The Flight Director of the Athletic department calculated the
Jet Fuel use and Regional Transport System (RTS) supplied the highly detailed bus-rider information.
Only for electricity was the data coordinated to start in January 1996, for all other emissions events
calendar year 2001 data was utilized. None of the provided data sets were checked against a second
source, but were visually and algorithmically examined for consistency and completeness. A
qualitative description of emissions totals as listed in the report is mentioned underneath; with the
confidence level of the emissions results expressed at 3 levels, low, medium and high.

Electricity - high - emission rates associated with kWh consumption were borrowed from the U.S.
Environmental Agency’s (EPA) Emissions & Generation Resource Database, eGRID, and reflect the
emissions generated in the power control area (PCA) that the University is located in. The database
lags a few years in production, but has up to date values for 1996 ~ 2000. For CY 2001, year 2000
emission rates were applied. No discounting was factored in to account for distribution losses, which
nominally stand at about 10% for the State of Florida. It is recommended for a future study to
collaborate with the University’s energy provider, Progress Energy, to ascertain system and
distribution losses to and from Campus, as well as within the campus proper.

Water - high - emission rates associated with water consumption were provided by Gainesville
Regional Utilities (GRU) and reflect the energy use associated with water extraction, treatment and
pumping from the Murphree Water Treatment Plant to the UF Campus. Emission rates for GRU’s
Power Control Area (PCA), as used in the production of drinking water, were borrowed from eGRID.

CFC’s & HFC’s - low - emission values for Chlorofluorocarbons and Hydrofluorocarbons used in
HVAC cooling applications at the Universities central chiller facilities were sourced from The Air
Conditioning & Refrigeration Technology Institute’s Refrigerant Database. Actual consumption and
loss figures were largely un-attainable, as no central data collection point for these activities exists at
UF at this time. Using popular references, an annual loss quotient of 3% was introduced, reflecting
broadly recent gas recovery techniques in the industry.

37



It is recommended that for a future study coolant gas usage data is carefully tracked as some of the
gases used at UF have a global warming potential in the 5000 range and can maintain their molecular
shape and heat trapping characteristics for over half a century or more.

Steam - medium - emission values for steam use were un-attainable and an approximation was derived
using the electric allocation factor, sourced form eGRID, for the University of Florida Co-generation
plant, currently owned and operated by Progress Energy. The gas fired cogen plant is located on
campus and produces electricity and several qualities of steam. The emission values for the steam
components vary according to the energy expended to produce the primary, secondary and tertiary
products, which alternatively can be electricity or steam. It is recommended that in a future study the
University work together with Progress to determine on a monthly basis the energy and relative
emissions associated with UF steam consumption.

Liquid Fuels - high - emission values for Natural Gas, Diesel, Gasoline and Jet Fuel were sourced
from Argonne National Laboratories’ Greenhouse Gases, Regulated Emissions, and Energy Use in
Transportation Model, commonly known as GREET. The values applied reflect the consumption of the
fuels themselves, not the energies expended during recovery, processing and transportation of the
fuels.

Emissions Reduction Technologies - /igh — reduction values derived from energy efficiency
measures such as digital controls, solar shading and compact fluorescent lights, renewable energy
applications, low emission vehicle technologies and carbon sequestration were compiled using a mix
of on Campus examples, case study’s gathered by the U.S. Department of Energy (DoE), various State
energy programs, research publications and manufacturers specifications. It is recommended, however,
that each engineering or upgrade project be carefully evaluated as the figures used in this report are
broader stroke and may not apply in any particular case. The study further recommends that UF engage
itself over time to evaluate possible carbon sequestration options within its own holdings as well as
through its academic and business network as the greatest amount of reductions for the lowest price
can be accomplished that way, and as such sequestration can hold great sway in the total cost of any
potential carbon neutrality plan that may come under consideration.

For ICBE:
Mark van Soestbergen

April 23, 2004
Gainesville, Florida, U.S.A
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The Greenhouse Gas Profile for the main UF Campus.

Function tCc0o2 Cost in USD
1 UF GHG Profile - 519,623 tCO2 kWh 264,868 $ 26,340,495
Steam 150,000 (est.) $ 3,337,286
Natural Gas 8,943 (est.) $ 1,702,675
Coolant Gases (HFC's) 4,489 (est.)
Coolant Gases Gasoline & Diesel 3,351 $ 500,413
(HFC's) Jet Fuel 601 $ 167,151
Natural Gas 0.86% . . Potable Water 767 $ 914,254
1.72% Gas"'g‘g 48; /D'ese' Other 86,604 (est.)
o Total tCO2 CY 2001 519,623 $ 32,962,274
Jet Fuel
0.12% GHG and cost rate per hour and day
per hour 59 $ 3,763
Potable Water per day 1,424 $ 90,308
0.15%
kWh Take a Virtual Tour of the UF Campus

50.97%

Other
16.67%

Learn about accounting protocols [ ¢
- ; e 2 EFIORIDA
Standards for carbon accounting are evolving ¢ =

Considerations in play when counting greenhouse emissions.

fig. > Topics in Emissions Measurement fie. 3 Topics in Actions to Reduce Emissions
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direct measuremEnt verss
sstimaicn or ealeulation;

factors and other standards
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for internal
actions

pecisct appiowal:
capital allocation,
clearing houss funstians

Internal, direct Targat Satting
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- ~
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Retions
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6.6, proect bassline eriteris)
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to Reduce
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emissions offset projec
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Images by Environmental Defense Partnership for Climate Action (PCA)

The UF GHG profile as compared to the number of students, annual budget and other parameters.

tCO2 CY 2001 519,623

Ibs CO2 per student/day 78
kg CO2 per student/day 36
UF general characteristics CO2 in tonne CO2in tonne Water in Gal Water in tonne
Students per student/yr per ft2/yr per student/yr per student/yr

40,000 13 0.02 26,272 99
Salaried employees per employee/yr per day per day per day

10,000 52 1,424 2,879,088 10,899
Budget (CY 2001) per budget $, in Ibs per hour per hour per hour

1,857,000,000 0.62 59 119,962 454

Humans in the educational process per human/yr per human/day per human/day per human/day

50,000 10.39 0.028 58 0.22
UF credit hour per credit hour per credit hour per credit hour

1,222,673 0.42 859 3.25



Chart reflecting main Campus electrical consumption and cost figures.

CY Year MWh Total Cost
1996 348,269 23,134,224
1997 347,727 21,803,677
1998 392,801 24,513,929
1999 349,447 21,445,131
2000 372,148 24,657,265
2001 369,951 26,340,495

MWh Cost History

$30,000,000 -

$25,000,000 -

$20,000,000 -

$15,000,000 -

$10,000,000 -

$5,000,000 -

$- -

1 2 3 4

W MWh Cost History | 23,134,224 | 21,803,677 | 24,513,929 | 21,445,131

Learn about Physical Plant Services

Learn more about UF's energy provider

The University of Florida's energy is generated by a mix of fossil, nuclear and renewable technologies.

Florida Power Corp (FPC) recently became Progress Energy
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Tables showing CY2001 UF Campus fresh water consumption, rainwater precipitation and related emissions figures.

Potable Water CY 2001
kWh factor per Kgal GHG factor per kWh (g) GHG per Kgal (g) tCO2 total from water use 2001
0.77 947.84 729.83 766.96
1,050,867,018 cost per Kgal total cost water
$ 087 $ 914,254
Rain Water CY 2001
Area UF Main Campus square foot per acre avarage annual rainfall in inch and in foot
1,966 acres 43,560 51.53 4.29
ft3 water UF campus yearly gallon per ft3 campus rainwater in gallons total Kgal
367,749,474 7.48 2,750,957,294 2,750,957
% bought vs 'received"’ water % rain water vs 'bought’ water
38.20% 261.78%
http://www.phys.ufl.edu/cgi-bin/weather.cgi/ About saving rainwater Rainwater as drinking water

Learn about local drinking water Learn about sustainable rainwater management Rainwater harvesting tips

Florida functions like a giant Britta filter and naturally offers us some of the finest water on earth.

GAIMESYILLE UNIV OF FLO, FLORIDA (083316)
1961-1998 38 Year Average
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Image by: St. John's Water Management District.
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Worksheet used to evaluate popular and geographically compatible carbon sequestration methods available for North

Florida.

Sequestration potential using Longleaf pine, a common species in North Florida, rotation age about 30 years
annual tCO2 to be offset tCO2 to tC value in tC
100,000 0.272727273 27,273 200
annual acres needed
336.96

acre to hectare
2.47105

annual hectares needed
136.36 $5

annual value
$16,667

cost to UF and total value to farmer

$500,000 $1,484

sequestration potential of Pinus palustris tC/ha

assumed cost per tCO2

value per acre

rotation age (yr)
30

value per acre/year
$49.46

Soil sequestration potential using the UF campus, deployed as a research project
area UF Main Campus square foot per acre avarage annual soil addition in inch and foot

1,966 acres 43,560 0.25 0.02
ft3 of new soil yearly cubic feet to cubic yard  cubic yard/yr Ibs per cubic yard
1,784,152 0.03704 66,085 1,500
annual soil weight (Ibs) Ibs to tonne weight in tonne % carbon (by weight) in new soil
99,127,502 2,204.60 44,964 2
annual carbon weight (t) tC equivalent in tCO2 as % of annual tCO2  program life in years
899 3,297 0.0063 100
tCO2 over program life height gain (ft) UF Campus over program life cost
329,736 2.08 2777

Learn about GeoSequestration
About Carbon Sequestration R&D
Learn about Natural Carbon Sequestration

View tree absorbing CO2
Movie by NASA

Farest Type Groups of the United States

Western Forests Eastern Forests

m Douglas-fir ® Northem Conifers
= Hemlock-sitka Spruce Northem Hardwoods
u Ponderosa Pine B Qak-pine
m Lodgepole Pine B Qak-hickory
Larch B Southern Pinas
= Er—spruce ¥ Botiomland Hardwoods
m Chaparral O Non-forest
Pinyon-Juniper B Water
m Western Hi

lardwoods
% Other Western Softwoods

Hawaii Forests
W Native Forest
B Mixed Forest

E

e

T,

i*

A critical part of an
overall carbon
management plan

* Use sites with diflering
land uses and vegetation
to develop and test

- Cropland (Coshocton
Agriculural Research
2ion,
~ Grassland (Sevileta
iational Researc:
Park, NM)

- Woodland (Mesia dei
Buey, NM

- 2Reclaimedmine
sites (Jackson, OH)

~ Uneclaimed mine
site (Madrid, M)

Net Primary Productivity (kgC/m?/year)

a 1 2

w

Learn about carbon cycles on planet earth
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our mission: "to make UF a
global leader in sustainability”
- Ssabne Cots & Hgs
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LLIF Carban
Meutral Report
2003

Azaum ptions
R eport
Slideshow
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www sustainable.ufl.edu  352-273-1173
Dave Newport, Office of Sustainability

314 Rinker Hall, P.O. Box 115703
University of Florida, Gainesville, FL 32611-5703

Carbon Neutral Assessment Project Office of Sustainability

54ft/1.65m

1 gallon of regular gasoline turns into
172 cubic feet / 4.87 cubic meters of pure CO2.

27ft/8.22m

One ton of CO2 easily fills up a
19,000 cubic feet / 556 cubic meters container.

¥
A,

Every year, the United States produces enough CO2 to cover its entire
land surface, including Alaska and Hawaii, with 1 foot of CO2.



Timeline

November 2001
Sustainability task force commissions
carbon neutral assessment project

March 2002

Campus spatial data integrated

with building energy consumption records and
emissions factors

July 2002
UF’s gaseous emissions profile
established online, research and modeling starts

May 2003
First draught and index report reviewed,
addition of local and regional transportation data

November 2003
Final draught assessment project & audio visual
presentation reviewed, begin post production

April 2004
First printing of Carbon Neutral
Assessment Project

FIBRIDA p.¢0.)

Carbon Neutral Assessment Project Office of Sustainability




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /FRA <>
    /DEU <>
    /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
    /ITA <>
    /NOR <>
    /SVE <>
    /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
  >>
>> setdistillerparams
<<
  /HWResolution [1200 1200]
  /PageSize [612.000 792.000]
>> setpagedevice




